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FINDING A NEW METHOD FOR THE SOLUTION OF
NONLINEAR EQUATIONS f(x) =0

Ohnmar Nwe"

Abstract

In this paper, the weak points of some numerical methods which
can be used to find the solutions of nonlinear equations f(x) =0 are
introduced.Then the new method (OhnmarNwe’s method) is presented. And
also the convergence of the new method is proved and comparison of the
convergence for the new method and Newton’s Method are expressed.
Finally, the weak point of the new method is discussed.

Introduction

We used the numerical methods for finding a zero of a continuous
function. There are several methods, in which, we would like to discuss about
the weak points of some numerical methods. We choose the methods are
Bisection Method, Method of False Position, Secant Method, Newton —
Raphson Method and Muller’s Method. Our intention is to compare with the
new method.

Weak Points of Some Methods

In this paper, we define the function f is continuous on the interval that we
consider.

In Bisection Method, we need f € C[a, b] and to find r € [a, b] such
thatf (r) = 0. The requirements aref (a) and f(b) have opposite signs.

(a,f(a))
ra Vr\;;%'/ #
(c.f(c))
b (b, f (b))
The formula is ¢, = anz “for all n. Here only the average of the interval
b
(ie., Int ) is used.

" Dr., Associate Professor, Department of Mathematics, Loikaw University



2 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

The convergence of the method is base on the sense that
b—
lr — c,| < Zn—ﬁfom =0,1,....

The weakness of this method is the convergence speed is fairly slow. If
f(x) = 0 has several roots in [a, b], it is not easy to calculate as a different
starting points and intervals must be used to find each root.

In Method of False Position, f(a) and f(b) need to have opposite
signs. It is used the line joining the points (a, f(a))and (b, f(b)).

(af(a))

U s
v

£

(¢, f(©)) b fB)

The formula is ¢, = by, — %for all n.The size of thef (b,,) and the

interval (b,, — a,, ) are used.

The convergence of this method is based on the sense that (b, —a,) — 0 as

n — oo,

This method is faster than the bisection method. But it is also not easy to
calculate for the several roots in an interval.

The weak points of the Bisection Method and Method of False Position are
they need two initial points which have opposite signs of function value. Also
these methods are not so easy to find the several roots.

In Newton-Raphson Method (Newton’s Method), f(x), f'(x) and
f"(x) need to be continuous near a root. This method used the tangent lines.
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A
\\J P1 Ro

ufe))]  @o f (o))

v

f
The formula is p = pr_q1 — f,—for k=172,...

The convergence of this method is based on the Taylor polynomial and
the fixed-point iteration.

This method is one of the most useful method. It is faster than the
Bisection Method and Method of False Position. This method requires two
function evaluations these are f(pr_;)and f'(px—1). And have difficulty if
f'(px-1) = 0.

This means local maximum (or minimum) is in the interval.
Sometimes the slope of f'(py)is small and the tangent line to the curve y =
f(x) is nearly horizontal. Then the sequence {p;} converges to some other
root. Another possibility is cycling which occurs when the terms in the
sequence {p, } tend to repeat.

v
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In Secant Method, two initial points (py, f (po))and (p1, f (p1)) near
the root are needed. It is used the line joining these two points.
A

y= f(x\
L D1 Po

LIS

v

~d

(P1:f(P1))\\\

(Po, f (o))

f(Pk)(Pk_pk_l) *
— —————"orall k.
f®R)—f®r—1)

The convergence of this method is super linear. It is faster than a linear
rate. It is almost as fast as Newton’s Method. Secant Method needs only one
function evaluation and is often faster in time, even though more iterates are
needed to attain a similar accuracy with Newton’s Method. The disadvantage

of the secant method is sometime it may not converge when f(py) = f(Pr—1)
4

The formula is py4+1 = px

v

In Muller’s Method, the three initial points (po, f(po)), (p1, f(P1))
and(pz, f (pz)) are needed. Theyare used to construct a parabola,second order

polynomial, which is used to fit to the last three obtained points.

(1, f(p1))
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In this method, it is based on the variable t = x — p, and use the differences
ho = po — p2andhy = p; —p,.

And then use the quadratic polynomial, involving the variable,
y=at?>+bt+c.

This method can be used to find the imaginary roots and it is no needed to use
derivatives. The convergence rate is faster than the Secant Method and almost
as fast as Newton’s Method.

The weakness of this method is three initial points are needed and extraneous
roots can be found as this method used the quadratic formula.

New Method ( Ohnmar Nwe’s Method )

If f(x) is continuous on the interval [a, b] and it will across the X-axis
at a root p that lie in the interval [a, b]. We draw a line by connecting the
points (py, 0)and (py, f(py)). Then we construct a circle as centre (py, 0) and
radius f(py). A

| (Do, f (o))

(p1, f(p1))
(P2, f (p2))
_P3;f(P3))

v

Then this circle pass through the X-axis at (pq, 0). For the next step, construct
the circle as centre (p,0) and radius f(p,). By proceeding, the centers of the
circles are closer and closer to the root p. Here the equation of the circle with
centre (py, 0) and radius f(py) is

(x = po)* + (v — 0)* = f(Po)* (1)
This circle equation (1) pass through the X-axis at p;. So that an equation
relating p; and p, can be found.
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(P1 = Po)? + (0 = 0)* = f(po)®

p1 = Po + f(Po)s (2)
When py_; and p, are used in place of p, and p; the general rule is
established as follow

Pk = Pi-1 + f (Pi-1)-

The convergence of this method is based on the idea that |p, — px_1| = 0 as
f(pi) = 0.

The decision step for sign(+) or (=) is to analyze

If ()| < |f (Pr-1)I.

Theorem ( Ohnmar Nwe’s Theorem )

Assume that f € C'[a,b] and there exist a number p € [a,b] where
f(p) = 0. Then there exist a § > 0 such that the sequence {p,};-, defined
by the iteration

Pr = 9(Pk-1) = Pr—1 F f(Pr-1) fork = 1,23, ...
will converge to p for any initial approximation p, € [p — §,p + &] . ( Here

the function g(x) is defined by g(x) = x + f(x)and it is used as the iteration
function.)

Proof. We will use the fixed-point theorem to prove. We have to remind the
fixed-point theorem.

(Fixed-point Theorem — Assume that g(x) and g'(x) are continuous on a
balanced interval (a,b) = (p — §,p + §) that contains the unique fixed point
p and that the starting value p, is chosen in this interval.

If |g(x)[<K<1 for all a<x<b. Then the iteration
Pn = 9(Pn—1) Will converge to p. In this case p is an attractive fixed-point.

If [g'(x)| >1 for all a <x < b, then the iteration exhibits local
divergence.)
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In our method, the iteration function is
g(x) =x+ f(x)
then g@X)=1Ff'(x).
To be convergent, g'(x) must be less than 1.
g’ =11+ ()] <1
Therefore, a sufficient condition for p, to initialize a convergent sequence

{Pi}r=o Which converges to a root of f(x) = 0 is that p, € [p — §,p + &] and
that § be chosen so that

1+ f'(x)|]<1 forall x€[p—4,p+56]

Comparison of Newton’s Method And Ohnmar Nwe’s Method

Now we would like to express some examples that will show the comparison
of convergent rate between Newton’s method and our method.

Table 1. Comparison of convergent rate for the function f(x) = x3 + 3x + 2

with py =0
k Newton’s Method Ohnmar Nwe’s Method
0 0 0
1 -0.6667 -2
2 -0.9333
3 -0.9961
4 -1.0000
Table 2. Comparison of convergent rate for the function f (x) = x3 + 3x + 2
with py = —2.5
k Newton’s Method Ohnmar Nwe’s Method
0 -2.5 -2.5
1 -2.1250 -1.75
2 -2.0125 -1.9375
3 -2.0002 -1.9961
4 -2.0000 -2
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Table 3. Comparison of convergent rate for the function f(x) = x3 + 3x + 2

k Newton’s Method OhnmarNwe’s Method
0 -3 -3

1 -2.3333 -1

2 -2.0667

3 -2.0039

4 -2.0000

Table 4. Comparison of convergent rate for the function f(x) = x3 — 3x + 2

k Newton’s Method OhnmarNwe’s Method
0 0 0
1 0.6667 -2
2 0.8444

3 0.9244

4 0.9627

5 0.9815

6 0.9908

7 0.9954

8 0.9977

9 0.9988

10 0.9994

11 0.9997

12 0.9999

13 0.9999

14 1.0000

Our method is needed only one initial point and convergent rate is faster than
the Newton’s method if the function has enough slope. The formula is also
very simple and it is very easy to calculate.
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Pitfall of Ohnmar Nwe’s Method

There are some difficulties to use our method if the function f(x) has
several roots in the interval that we consider. At that condition, it may be jump

of some roots although it gives a root . Another possibility is out of the
interval if f(py) is very large.

ﬂu

N
=
S

v
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WAVELETS ON GROUPS
KhinWah Win"

Abstract

This paper is an expository survey of basic concepts of Wavelet
Analysis. We shall discuss wavelets in L? (R) and L? (G), where G is a
locally compact abelian Group, in particular a Lie group. A discussion of
basic facts of Topological groups, Differentiable Manifolds and Lie groups
are also included.

Keywords: Haar measure, Topological group, Differentiable Manifold,
Lie Group, Wavelets.

1. Introduction

The classical Fourier theory is concerned with the study of the Fourier

transform f of a given function f":

() F@=] f()e ™ dx

and its inversion problem i.e. studying conditions under which the following
inversion relation holds:

@  S@=][(&e"dx

The corresponding Foureir sereis theory is the investigation of the validity of
the relation.
B S=D f(me™
neZ
in various modes of convergence, where

0

@ =] f@e™ar

—00

The infinite series
5) Z f (x)e™ is called the Fourier series of f'and the numbers f (x) are

neZ

called the fourier coefficients of f. The Euler relation, e* =cosx+isinx,

" Tecturer, Department of Mathematics, University of Yangon
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shows that the Fourier sereis in (5) is infact a series in sine and cosine. In
application, we usually have to approximate a function by its Fourier series,

F) ~ Y Fxen

n=-o

and thus have to compute the infinite integral
J= [ f(x)e™dx.

Except for very nice functions, this integral cannot be evaluated in closed
form.

Again we have to approximate this infinite integral on some suitable finite
interval. It is therefore desirable that the integrand decays at infinity.

The problem here is that sine and cosine functions do not decay at infinity i.e.,
|sin x|,| cos x | —~> 0as |x|—>oo. They remain oscillatory on the whole real
line.

Wavelets are an attempt to replace sine and cosine functions with function
having sufficient rate of decay at infinity.

Wavelets (on P) were introduced in early nineteen eighties by Morlet, Arens,
Fourgeau and Giard. Later the mathematical foundations of the wavelet theory
was laid down by I. Daubechies and Y. Meyers [7]. This paper is an
exposition of the extension of wavelet theory from R to topological groups.

2. Fourier Analysis on Groups

In this section we briefly discuss Fourier Analysis on Groups. For
details, we refer to [8].

2.1 Haar Measure

2.1.1Definition. A topological group G is a group which is also a topological
space such that the group operations

GxG —-»> G
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xxy) X,
and

G -
X - X

are continuous.

A topological group G is locally compact if it is locally compact as a
topological space.

2.1.2 Proposition. Let G be a locally compact abelian group (LCA). Then
there exists a non-negative regular and translation invariant Borel measure on
G. This measure is called the Haar measure on G. [8].

Some function spaces of interest on G are as follows:

- ((G) denotes the set of all continuous complex functions on G.

- Cc(G) denote the set of all continuous complex functions on G with
compact support.

- L"(G),1< p <o the set of all Borelmeasurable functions on G such
that

1/p
( flrr de <o
G
where dx is the Haar measure on G.

2.2 The Dual Group and the Pontryagin Duality

2.2.1 Definition. Let G be a LCA group. A complex function yon G is called
a character of G if for all x, y €G,

(1) ly(x) =1
i) ) =r(x)y ().
2.2.2 Remark.

(1) 7is a homomorphism of the group G and the multiplicative group S of
the unit circle in X

(2) The example of a character is the exponential map
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R—S!

X e”.

2.2.3 Definition. Let /" be the set of all continuous characters of G. /"is a
group with respect to the addition defined by

(71 +7:)(x) = 71 (X) 7, (%), (71,7,€l,xe@)
(', +) is called the dual group of G.

It is customary to write the “duality notation” (x, ») for ®(x).

2.2.4 Theorem (The Pontryagin duality)

Let G be a LCA group and I'be its dual group. Let [ be the dual group
of . Then I =G. [8]
2.3 The Fourier Transform on Locally Compact Abelian Group

Let G be a LCA group and I'be its dual group. Let f € L(G). A

function f defined on I" by

F0) =] f@)(=x)dx,(y T)

is called the Fourier transform of /.

This generalization of the classical Fourier transform on R to a LCA
group G is only too natural, since R is also a LCA group.

As may be expected the following classical results still hold:

() [feg@de=[f()&()dy, (Parseval)

@ IIflh= £l (Plancherel) [8]

2.4 Lie groups
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In doing Fourier Analysis especially wavelet Analysis, it is sometimes
necessary to consider smooth functions also.

For this purpose we have to consider topological spaces which have
also differentiable structure.

A differentiable manifold is a Hausdorff topological space X such
that each point in X has a neighbourhood homeomorphic to an open set in R".

2.4.1 Definition. A topological group G which is also a differentiable
manifold such that the maps

GxG -» G
x,y) B xp and
G - G

x > x' aresmooth is called a Lie group.
For our purpose the following matrix Lie groups will suffice.

Let k& be the real field R or the complex field X.

Let M, (k) be the set of all n x n matrices with entries from £.

(1) The general linear group GL, (k)={Ae M, (k):det 4 # 0}.
(2) The special linear group SL (k) ={A4 e GL,(k):detA=1}.
3) The orthogonal group O, (k) ={4 e GL, (k) AT A= 1}

Clearly GL,(k),SL, (k) and O, (k) are groups with respect to ordinary matrix
multiplication.

Each n x n matrix 4 can be identified as a point of k" .
So GL,(k), SL,(k) and O, (k) are also topological groups with the topology
induced by &" . For details we refer to [1].

3. Wavelets
3.1 Wavelets on P
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3.1.1 Definition. Let y e L’ (R ) with sufficient rate of decay at infinity.

Consider the family
V(=22 x=k), (jkeZ)
of translations and dialations of v/ .

Suppose that {; ,} forms an orthonormal basis for L*(R); i.e.,

<l//j,ka‘//1,m> = 5_/,1 k.m
f = Z <f’l//j,k>‘//j,k'
Jj.keZ

Then y is called a mother wavelet and the system {y/;,} is called a wavelet

basis.
Example (1). The Haar function is a wavelet with compact support.

1 if OSx<l,
2
) 1
w(x)=<-1 if §£x<l,
0
elsewhere
L AY
L )
¢ : - 1 >
L A
L )
Figure (1)

Example (2).The Gaussian function is a smooth wavelet with fast rate of
decay at infinity.

w(x)=e™
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YAX)

Figure (2)

3.2 Group theoretical approach to wavelets.

We recall some concepts of group representations [9].

3.2.1 Definition. Let G be a locally compact group. A unitary
representation of G is a pair (r,H) where H is a Hilbert space and 7 is a

continuous homomorphism of G into the group U (H) of unitary operators on
H that is the operations are continuous.

z(xy) = z(x)7z(y),
z(x") = (z(x))"' =(x(x))" for x,yeG.
3.2.2The Affine Group

Let G= {(a,b) e R" xR,a # 0}.
Define the operation (a,b)-(c,d) = (ac,d +2).
¢

Then G is a group called the “Affine group” with (a,b)" = (a™',—ab).
For g =(a,b) e G, define
1 x—b 1 _
(T )(x) = W( J = w(g'(x)
| a Vlial

|a

where y € L’(R).
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Then the mapping,

T:G->U(L(R))

g+ T, is a unitary representation of G on L*(R), [11].
3.2.3 The continuous wavelet transform

Let weL’(R) be a wavelett Then the mapping
W,:L*(R)—L*(R*xR) defined by

W, Q) = [fENTp)(x)dx

= ([,Ty)
= <f’l//a,b>

is called the continuous wavelet transform.

The main purpose of wavelet Analysis is [like that of Fourier Analysis] to
look for conditions such that the Calderonreproducing formula

[07, ) w(xdig) = f

G

holds, where Ais the Haar measure on G [11].
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A STUDY ON FILTERS
Khin Moe Moe"

Abstract

In this paper, firstly the classification of filters is discussed.
Topological space plays a crucial role in this discussion. After that the
relations between them are studied. Especially, the characterizations of
ultrafilters are presented with detail proofs. Ultrafilter is a powerful tool
both in set theory and in topology. Moreover, the comparisons of filters are
expressed and some notions of filter basis and trace of filter are described.
Finally, ultrafilter convergence theorem and convergence of Cauchy filter in
topological vector space are investigated.

1. Some types of filters
1.1 Definitions

A collection F of subsets of a set X is called a filter on X if it satisfies
the following axioms:

(F1) If Ac X and A contains aset B € F, then A € F.
(F2) The intersection of a finite collection of sets in F belongs to F.
(F3) The empty subset of X does not belong to F.

First let us examine a few elementary consequences of this definition.
It follows from (F1) that X is a member of any filter on X.

Note that P(X) a collection of subsets of X is not a filter on X.
However, it satisfies (F1) and (F2). Therefore it is sometimes called the
improper filter on X. Conversely, if F is a collection of subsets of X
containing the empty set and satisfying (F1) and (F2), it follows from (F1) that
F = P(X), that is, F is improper.

Let X be a set and A < P(X) a collection of subsets. Then A has the
finite intersection property (FIP) if any finite intersection of sets incA is non-
empty. (From the axioms (F2) and (F3) that a filter has the FIP.)

The cofinite filter on an infinite set X is the set of all subsets A of X
such that the complement of A in X is finite.

* Dr, Lecturer, Department of Mathematics, Monywa University
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That is, F = {A € X: X\ A is finite }. (or)
F={X\A:AcCX isfinite }.

This filter on X = N, the set of natural numbers, is also called the
Fréchet filteron N.

A maximal element of the set of all filters on X is called an ultrafilter
on X.

For any non-empty subset M of X, the set {ACSX : M C A} is a filter
on X, the principal filter generated by M.

For any a € X the set { AS X : a € A } is the principal ultrafilter
defined by a.

Any ultrafilter that is not principal is called non-principal ultrafilter.

A filter F on X isfree if the intersection of all sets in F is empty.
That iS, Naer A= 0.

Let X be a set and A < P(X) a collection of subsets. The (im)proper
filter generated by A is the set

<A>=N({F cP(X): F o Aand F is a(n) (im) proper filter on X}).

So <A> is the intersection of all (im) proper filters on X that contains
set A .

1.2 Example
The set of all neighborhoods of a point x € X is filter B(x) called the
neighborhood filter of x.
2.Characterizations of the Ultrafilters
2.1 Theorem (Ultrafilter lemma)

Let X be a set and suppose A € P(X) has FIP. Then there is an
ultrafilter U on X which contains all of A.
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Proof

Let the set B consisting of all proper filters on X containing A,
partially ordered by set inclusion. Then 8 is non-empty because < A>€ L.
Let C be a chain in 8.

We will prove U C € 8. For (F3), since any element of C does not
contain empty set, @ €U C.For (F2), if A, BEUC, then there are
C, D € C such that A€ C and B€ D. Since C is a chain, we have Cc D
without loss of generality. Consequently, A, B are elements of D and since D
is a filter AN B € De U C. For (F1), it is a trivial matter to verify that U C is
closed under supersets, so we have U C € B indeed. This union is an upper
bound of C in B. According to Zorn's lemma, B has maximal elements. Let
U be a maximal element of L. If F O U is a filter, then A < F.By the
maximality of U, F € U and we have U = F.So U is an ultrafilter and it
contains all of A.

2.2 Lemma

Let All Az, ceey Al’l € P(X) such thatA1 UAZ U... UAn eu
wherelU is an ultrafilter on X. Then A; € U for at least one i. In addition, if
the sets are mutually disjoint, then A; € ‘U for exactly one 1.

Proof

Let A; UA, € U. Suppose (to the contrary) that neither A; € U nor
A, €U.Consider M = {Z€P(X):A; U Z€eEU}.

First we need to show that M is a filter on X.For (F3), if @ is a
member of M, then A; = A; U@ € U, contradiction. So @ & M.

For (F2), if By B, € M, then A;UB; €U and A; UB, €U.
Now (A;UB;)N(A;UB,) €U because U is a filter.That is,
A; U (B; NB;) € U.It follows thatB; N B, € M.

For (F1), let Ve P(X), U cVand U € M.Then A; UU € U.
Since U cV, AU Uc A; U V.Thus A; U V€ U because U is a filter.
SoV e M.
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Therefore M is a filter on X.Moreover, we have U S M.
Also, U & Mbecause A, € M\U, contradicting the maximality of U.Our
assumption is false, so A; € U for at least one i.Finally, if A; N A, = @and
A;, A, € U then this implies that @ € U, a contradiction.The generalization to
n=>2 follows by induction.

2.3 Theorem

Let F be a filter on X. Then F is an ultrafilter if and only if for every
A c Xeither A€ For X\A€ETF.

Proof

Suppose F is an ultrafilter.Let A € P(X).The previous lemma holds
sincc AUX\VA)=XeFandAN(X\A)= 0.

Conversely, suppose (to the contrary)that F is not an ultrafilter. Then
there exists a filter M such that F & M and take A € M\ F.

Thus A € M and A€ F. So X\ A € F by given condition.

Since F € M, then this implies that both A and X \ A are in M.
Hence AN(X\A )= @ € M, contradicting the fact that M is a filter.

2.4 Remark

If U is an ultrafilter on X, and A€ U, then U contains all sets B with A
c B c X. Indeed, if we start with such a B, then by the above result, either B
EUor X\BeUIfX\BeU,then AN (X\B)= 0 €U, contradiction.

Therefore B must belong to U.

2.5 Corollary
The Fréchet filter Fon an infinite setN is not an ultrafilter.
Proof

Let E and O denote the sets of the even and odd numbers in N
respectively. We known that ENQ = @ andEU O = N € F, but neither E
nor O belongs to F because any set in Fhas finite complement.
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3. Types of Ultrafilters

There are two very different types of ultrafilters such as principal and
non-principal (free).
3.1 Proposition

Any ultrafilter over a finite set is principal.
Proof

Let X be a finite set, U be an ultrafilter over P(X) and
U=1{5,S8,..,5}.Since® € Uand S; N S; € U for every i, j,

$:NS, N..NnS,#@. If a en¥_, S;, then a € UBut by the definition of
principal ultrafilter{ S : a € S} < U.By the maximality of ultrafilter,
U ={S: a€e S}.

(or)

Let A be a finite set. Then either some a € A satisfies {a} is in the
ultrafilter, in which case it is principal; or else X \ {a} is in the ultrafilter for
all a€ A, so the finite intersection

AN(Ngea X\ {a})=AN(X\ Ugepia} )=ANX\VA)=0
is also in the ultrafilter.

So a non-principal ultrafilter must contain only infinite sets. In
particular, if X is finite, then every ultrafilter on X is principal.

3.2 Proposition

Cofinite filter is intersection of all non-principal ultrafilters.
Proof

Let X be an infinite set.

Suppose that a set AC X; we want to show that A is cofinite.
Suppose for contradiction that A is not cofinite. That is, the set D= X \ A is
infinite. From Proposition 3.1, the infinite set D belongs to some non-principal
ultrafilter U on X. But U is a non-principal ultrafilter on X which does not
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contain A, contradicting our assumption that A belongs to every non-principal
ultrafilter.

Let F ={B<S X: X \ B is finite}, the cofinite filter on X. Then the
collection {D} U F has the FIP, whence {D} UF < U for some ultrafilter U.
Since U contains F, it is non-principal.

3.3 Corollary
A non-principal ultrafilter is free.
Proof

If there exists XEN erA, then X \ {x} is not an element of F, by
Theorem 2.3, {x} € Fand F is a principal ultrafilter.

3.4 Proposition

Every non-principal ultrafilter on an infinite set X contains the cofinite
filter on X.

Proof

Let U be a non-principal ultrafilter on X and let x € X be arbitrary.
Since Uis an ultrafilter, exactly one of the sets {x} and X \ {x} belongs to U,
and since Uis non-principal, {x}& U. Thus, X\{x}€ U for each
x €X. Now let F be any finite subset of X; then

X \ F=X \ UXEF {x}=ﬂx€5n (X\ {X})E ’U

That is, X \ F € U. We have {X \ F: F € X is finite} is the cofinite
filter on X.

Therefore U contains the cofinite filter.

3.5 Proposition

An ultrafilter on X is free if and only if it contains the Fréchet filter on
X.
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Proof

In the previous proposition we proved that every free ultrafilter on X
contains the Fréchet filter on X. For the converse, suppose that U is a fixed
(principal) ultrafilter on X; then there is an x€ X such that {x} € U.

But X \ {x} is an element of the Fréchet filter that is not in U, so U
does not contain the Fre'chet filter.

4. Ultrafilter Convergence Theorem
4.1 Definition

A filter F on a topological space Y converges to a pointy € Y or y is
a limit of F if for all open sets U containing y, U € F.

4.2 Theorem
Let Y be a topological space.

1. Y is Hausdorff if and only if every ultrafilter F on Y converges to at most
one point.

2. Y is compact if and only if every ultrafilter F on Y converges to at least
one point.

Proof

1. Suppose (to the contrary) that Y is Hausdorff, but x # y are limit
points of F.

Since Y is Hausdorff, there exist disjoint open sets x € U and
y €V By the definition of limit point, U, V €F but U N V=0,
contradiction.

Conversely, suppose that Y is not Hausdorff. Then there are points
x # y such that every open neighborhood of x intersects every open
neighborhood of'y.

Then {U: x € Uopen} U { V :y € V open } has the FIP. Let F be an
ultrafilter containing it. So x and y are both limit points of F.
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2. Suppose to the contrary that Y is compact, but F has no limit points.
Then for all y € Y, there is an open set Uycontaining y such that U, € F. So
Y =Uyey Uy and by compactness, Y=U;_, Uy,. But YE F, so some Uy, € F,
contradiction.

Conversely, suppose that Y is not compact. Then there is an open
cover Y=Uy¢y Uywith no finite subcover. So N; (Y \ U;) = @, but no finite

intersection is empty. Then {( Y \ U;) };has the FIP, so we can take an
ultrafilter F containing it. Now for any point y € Y, y is contained in some Uj,
and U; € F, since( Y \U;) € F. Soy isnot a limit point of F.

5.Comparison of filters on a set X
5.1 Definition

Let F;, F, be two filters defined on a set X. We say that F,is finer
than F,(or that F,is coarser than F)) if F, C F,.

5.2 Proposition

Let (F));er be a family of filters on a set X. Then F =N F; is a filter
on X and has the following properties.

(a) F is coarser than F;(i € I).
(b) If F'is a filter coarser than everyF;(i € I) thenF c F.

Proof
For (F1), let AcX, BcA and BE F. It follows that B € F; for every i€

Since F; is a filter and BCA, A€ F; for everyi € L.
Thus A Eﬂiel Ti =F.

For (F2), let Ay, A, ..., A € F. For each j, A; €Ni; F; and A; € F;
for every i € L.Since F; is a filter (i € 1), N, A € Fi(i€1).So N}, A, €
Nier Fi = F.
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For (F3), for each i, F; does not contain empty set, @ &€N;c F;.
Therefore F is a filter. Since F = N F;, F < F;(i € I).That is, F is coarser
than F;(i € ).

(a) Let F be a filter coarser that F,(i € I). Thatis, F c F;(i € I).
Thus F cnyg F, = F.

5.3 Definition

Let (F));e be a family of filters F;defined on set X. If there exists a
filter F on X such that

(glb1)F is coarser than every F;(i € I).

(glb2) If F' is a filter on X such that F'is coarser than every F;(i € I), then
F'c F.Then F is called the greatest lower bound of the family ( F,).
Proposition (5.2) implies the greatest lower bound of a family (F;);¢; of filters
F; on X always exists.

5.4 Definition

Let (F,);g be a family of filters F; on X. If there exists a filter F on X
such that

(lubl) F is finer than every F,(i € ).

(lub2) If F is a filter on X such that F'is finer than every Fi,i€ 1,
then Fis called the least upper bound of ( F,)ie.

5.5 Proposition

Let (F;);¢ be a family of filters on a set X. Then this family has a least
upper bound in the set of all filters on X if and only if there exists a filter on X
which is finer than every F; fori € L.

Proof (Necessary condition)

Assume that the least upper bound F exists.(lub 1) implies F is finer
than every F; fori € L.

(Sufficient condition)
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Assume that there exists a filter Fon X which is finer than F; (i € I).Let ®@ be
the set of all filters which are finer than F; (i € I).Then F € ® and so ® is
non-empty.Let F be the greatest lower bound of ®.We prove that F is least
upper bound of F; (i € I).

Let F; €( F))ier Since F is the greatest lower bound ofF; (i € ), Fj c

F.

That is, F is finer than every F; (i € I).Put g € ®. Then g is finer than
every F;.Thusevery F; is coarser than g of ®. Hence F; C F.

Let F'be a filter on X such thatF " is finer than every F; (i € I).

Then F' € ®. Since F be the greatest lower bound of ® and F' € @,
(glbl) implies F c F .Therefore F is the least upper bound of ( F,);qr.

6. Some Notions of Filter Basis and Trace of Filter
6.1 Definition

A collection B of subsets of X is a filter basis if it satisfies the
following two conditions:

(FBI1) The intersection of two sets in B contains a set of B.

(FB2) B is non-empty and the empty subset of X does not belongs to B.

6.2 Definition

Let f: X—Y be a mapping from a set X into a set Y. Let B be a filter
basis on Y.Define f_l(%)z{ f_l( A):A€EB}.

6.3 Proposition

Let B be a filter basis on Y and f: X—Ybe a mapping. Then {~ 1(23) is
a filter basis on X if and only if 1(A) # @ for every A € B.
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Proof

Assume that 1(23) is a filter basis on X. (FB2) implies f 1(23) is
non-empty and empty subset of X does not belong to f 1(523). For each A €
B,f'(A) € (B).

So 7 '(A) % 0.

Conversely, assume that 1(A) # @ for every A € B.Since B is a

filter basis, B # @ and empty subset of Y does not belong to B. If A € B,
then A+ Q.

Moreover, f'( A) # @ for every A € B.Therefore the empty subset of
X does not belong to f 1(23). Take Z,Z,€ f 1(QS).Then there
exist A; A, € B such that Z, = '(A;) andZ, = f'(A,). If A| A, € B,
then there existsA; € Bsuch thatA; € A; NA,. It follows that
1(A;)c 1A, NAY)= 7'(A))Nn T'(A))=Z, N Z, Therefore £ '(B)is
a filter basis on X, if {~ 1(A) # @ for every A€ B.

6.4 Definition

Let A be a non-empty subset of a set X and F a filter on X. Then the
trace of Fon A is defined and denoted by F, = {ANB: BE F}.

6.5 Proposition

If B is a filter basis on X, then the trace B, = {ANB: BE B} is a filter
basis on A if and only ifANB+# @ for every BE B.

Proof
Let f:A—X be the canonical injection of A into X defined by f(x) = x.
Let B € B.
f1(B) = {x € A:f(x)€ B} = {x € A: x€ B} = ANnB.
f1(B)={f'(B):B € B}={ANB:BE B} = B,.
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Proposition 6.3 implies 1(23) is a filter basis if and only if

- 1(B) # @ for every B € B. Therefore B, is a filter basis if and only if A N
B # @ for every B € B.

7. Convergence of Cauchy Filter
7.1 Definition

Let X be a topological space and B a filter basis on X. A point x of
X is said to adhere to B if x adheres to every set A in B.

7.2 Definition

Let E be a topological vector space and ACE. A filter Fon A is said to
be a Cauchy filter if for every neighborhood of zero V, there exists a set
X € F such that X—XcV.

7.3 Proposition

Suppose that Fis a filter on a set A of a topological vector space E and
thatF converges to a point X€ E.Then Fis a Cauchy filter on A.

Proof

Assume that F on A converges to x € E. Let V be neighborhood of
zero in E.Then there exists a balanced neighborhood U of zero such that
U+ U c V. Since Fconverges to x, B(x) € F. Thus x + U € B(x) € F. Then
there exists X € F such that X cx + U.

Let z € X—X. Then there exists y, w € X such that z =y - w.Since y,
weE Xand X cx+U,y-xand w - x € U.Since U is balanced, w- x € U
implies x-w € U.

Thus (y - x) +(x-w) EU+UcC V.Soz=y-w €V, for every z€
X-X.Hence X-X c V.Therefore F is a Cauchy filter.
7.4 Proposition

If the point x adheres to the Cauchy filter Fon a set A of topological
vector space E, then Fconverges to X.
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Proof
Let F be a Cauchy filter on A and x adheres to F.
Take W € B(x), whereB(x) is the set of neighborhood of x.
Hence there exists a neighborhood V of zero such that x +V ¢ W.

Therefore there exists a neighborhood U of zero such that U+U cV.
Since Fis Cauchy filter, there exists X € F such that X-X cU. x€ Xsince x
adheres to X and x + U is a neighborhood of x and hence

x+U) n X+ 0.

Takey € (x + U)NX . Theny€x +Uandy € X.

Letz€ X. Thenz -y € X-X cUSoz€y+ Ucx + U+Uc x + Vc W.
Hence X € W.Since X € F and X cW, WeE F and B(x) c F.

Therefore F converges to X.
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COMPARISON OF SIMPLE ACCELERATION METHOD
AND CONWAY'S METHOD

Li Li Than"

Abstract

Congruence can be used to determine on which day of the week a
given date falls. We discuss the calendar formula to calculate the day of the
week of December 25, 2017. Also, we express easier formula to calculate.
And then, we describe Conway's Doomsday Algorithm. The Doomsday
Algorithm is an Algorithm for calculating the day of the week for any given
calendar date. The algorithm is based on first computing doomsday which is
the day of the week of the last day of February, or of January. We present
an acceleration method for calculating the dooms year term of the
Doomsday algorithm. Finally, we show that simple acceleration method is
similar in form to Conway's lookup table acceleration method.

1. Definitionsm

A year is the amount of time it takes the Earth to make one complete
orbit around the Sun.

A day is the amount of time it takes the Earth to make a complete
rotation about the axis through its north and south poles.

A year is approximately 365.2422 days long. In 46 B.C., Julius Caesar
(and its scientific advisors) compensated for this by creating the Julian
calendar, containing a leap year every 4 years; that is, every fourth year has
an extra day, namely, February 29, and so it contains 366 days. A common
year is a year that is not a leap year.
This would be fine if the year were exactly 365.25 days long, but it has the
fact of making the year 365.25 —364.2422 = .0078 (about 11 minutes 14
seconds) days too long. After 128 years, a full day was added to the calendar,
that is, the Julian calendar over counted the number of days.

Let us now seek a calendar formula. For easier calculation, we choose
0000 as our reference year, even though there was no year! Assign a number
to each day of the week, according to the following scheme:

Sun Mon Tues Wed Thurs Fri Sat
0 1 2 3 4 5 6

* Dr, Lecturer, Department of Mathematics, Myingyan Degree Collage
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In particular, March 1, 0000, has some number a , where 0 <a <6 . In
the next year, 0001, March 1 has number a +1(mod 7), for 365 days have
elapsed from March 1, 0000, to March 1, 0001, and

365 =52x7 +1=1 mod7.

Similarly, March 1, 0002, has number a + 2, and March 1, 0003, has number a
+3. However, March 1, 0004, has number a +5 , for February 29, 0004, fell
between March 1, 0003, and March 1, 0004, and so 366 =2mod7 days had
elapsed since the previous March 1. We see, therefore, that every common
year adds 1 to the previous number for March 1, while each leap year adds 2.
Thus, if March 1, 0000, has number a, then the number a’ of March 1, year vy,
is
a’=a+y+Lmod7,

[For 0000, 365 = amod 7,

for 0001, 2 x 365 =a+1mod 7,

for 0002, 3 x 365 =a+ 2mod 7,

for 0003, 4 x 365 =a+ 3mod 7,

for 0004, 4 x 365 =a + 4+1mod 7]
where L is the number of leap years from year 0000 to year y. To compute L,
count all those years divisible by 4, then throw away all the century years, and
then put back those back century years that are leap years. Thus,

L=|y/4]~[y/100 |+| y/400 ],

where | x| denotes the greatest integer in X.

For 1 year, L =0,

for 2 years, L =0,

for 3 years, L =0,

for 4 years, L=1,

and so on for 100 years , L =24 =100/ 4 -100/100,

for 400 years, L = 97 = 400/4 -400/100+400/400.
Therefore, we have

a'=a+y+L
=a+y+|y/4|-|y/100 |+| y/400 | mod 7.
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We can actually find a’ by looking at a calendar. Since March 2, 1994, fell on
a Tuesday,

2=a+1994+|1994/4 |- 1994/100 |+| 1994/400 |
=a+1994+498-19+4 mod 7,

and so
a=-2475=-4 =3mod7

(that is, March 1, year 0000, fell on Wednesday). One can now determine the
day of the week on which March 1 will fall in any year y > 0, namely, the day
corresponding to

3+y+| y/4]-|y/100 |+| y/400 | mod 7.

There is a reason we have been discussing March 1.

Let us now analyze February 28. For example, suppose that February
28, 1600, has number b. As 1600 is a leap year, February 29, 1600, occurs
between February 28,1600, and February 28, 1601; hence 366 days have
elapsed between these two February 28's, so that February 28, 1601, has
number b+2. February 28, 1602, has number b+3, February 28, 1603, has
number b+4, February 28, 1604, has number b+5, but February 28, 1605, has
number b+7 (for there was a February 29 in 1604).

Let us compare the pattern of behavior of February 28, 1600, namely,

b, b+2, b+3, b+4, b+5, b+7, ...., with that of some date in 1599. If May 26,
1599, has the number c, then May 26, 1600, has the number c+2, for February
29, 1600, comes between these two May 26's, and so there are 366 =2mod7
intervening days. The numbers of the next few May 26's, beginning with May
26, 1601, are c,c +2,c+ 3, c +4,c+ 5, c+7. We see that the pattern of the
days for February 28, starting in 1600, is exactly the same as the pattern of the
days for May 26, starting in 1599; indeed, the same is true for any date in
January or February. Thus, the pattern of the days for any date in January or
February of a year y is the same as the pattern for a date occurring in the
preceding year y —1: a year preceding a leap year adds 2 to the number for
such a date, whereas all other years add 1. Therefore,
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February 28, 1600, has number b,

February 28, 1601, has number b + 2, (since 1600 is a leap year)
February 28, 1602, has number b + 3,

February 28, 1603, has number b + 4,

February 28, 1604, has number b + 5,

February 28, 1605, has number b+ 7, (since 1604 is a leap year)
So, it has the pattern: b, b+2, b+3, b+4, b+5, b+7,...,

May 26, 1599, has the number c,

May 26, 1600, has the number c + 2, (for February 29, 1600)
May 26, 1601, has the number ¢ + 3,

May 26, 1602, has the number ¢ + 4,

May 26, 1603, has the number ¢ + 5,

May 26, 1604, has the number ¢ + 7,

so it has the pattern:

c,ct+t2,c+3,ct+4,c+5,¢c+7.

Now we find the day corresponding to a date other than March 1. Since March
1,0000, has number 3, April 1, 0000, has number 6, for March has 31 days
and 3+31=6mod7. Since April has 30 days, May 1, 0000, has number
6+30 =1mod7. Thus, the following table gives the number of the first day of

each month in year 0000:
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March 1,0000, has number
April 1

May 1

June 1

July 1

August 1

September 1

October 1

November 1

December 1

— L WO DN R~ N W

January 1
February 1 4
We are pretending that March is month 1, April month 2, etc. Let us
denote these numbers by 1+ j(m) , where j(m), for m=1,2, ....,12, is defined by
j(m):2,5,0,3,5,1,4,6,2,4,0,3.
day  j(m) year

ForMarch1, 0000 has number 1 + 2 + 0 =3
ForMarchl, 0001 has number 1 + 2 + 1 =4
ForMarchl, 0002 has number 1 + 2 + 2 =5
ForMarchl, 0003 has number 1 + 2 + 3 =6
ForMarchl, 0004 hasnumber 1 + 2 + 4 +1 =8=1 mod7
I+ 2 + 4+[4/4]-[4/100]+[4/400]=1 mod7

Formonth m, day d, and year y, d+ j(m)+g(y) mod 7
where g(y)=y+| y/4|-| y/100 |+| y/400|.

2. Calendar Formula and Its Application

Proposition 2.1. (Calendar Formula). The date with month m, day d, year y
has number

d + j(m) +g(y) mod 7 ,
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where
j(m)=2,5,0,3,5,1,4,6,2,4,0,3,

(March corresponds to m =1, April to m = 2, , February to m =12 ) and

g(y)= y+Ly/4J—Ly/lOOJ+Ly/4OOJ,

provided that dates in January and February are treated as having occurred in
the previous year.

Proof. The number mod 7 corresponding to month m, day 1, year y, is
I+ j(m) +g(y). It follows that 2+ j(m) +g(y) corresponds to moth m, day 2,
year y, and, more generally, that d + j(m) +g(y) corresponds to month m, day
d, yeary.

Example 2.2. Let us use the calendar formula to find the day of the week on
which December 25, 2017, fell. Here m=4,d = 25,and y = 2017. Substituting
in the formula, we obtain the number

25+ 4+ 2017+12017/ 4] — [2017/100] +12017/ 400] = 2535 =1mod7,
therefore, December 25, 2017, fell on a Monday.

Most of us need paper and pencil (or calculator) to use the calendar formula in
the proposition. Now we use some ways to calculation.

One mnemonic for j(m) is given by
j(m) =[2.6m-0.2, where 1<m<12.

In above example, we also obtain the number
1+] (2.6)10—0-2 |+2017+[ 2017/4] - 2017/100)+[2017/400] =2535=1mod 7

where m =10.

Another mnemonic for j(m) is in the sentence:

My Uncle Charles has eaten a cold supper; he eats nothing hot.
2 5 (7=0) 3 5 1 4 6 2 4 (7=0) 3
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2.3 Corollary. The date with month m, day d, year y =100C+ N, where
0 <N <£99, has the number

d +j(m) +N+ [N/ 4] +[C/ 4] -2C mod 7,

provided that dates in January and February are treated as having occurred in
the previous year.

Proof. If we write a year y =100C+ N, where 0 <N < 99, then
y =100C+N = 2C+ N mod7,

| y/4]=25C+|N/4]=4C+|N/4] mod7,
| y/100 |=C, and | y/400 |=|.C/4].

Therefore,
y+|y/4|-|y/100 |+|y/400 |=2C+N+4C+|N/4]-C+|[C/4] mod 7
=N+|N/4]+|C/4]-2Cmod 7.

This formula is simpler than the first one. For example, the number
corresponding to December 25, 2017, is now obtained as

25+ 4+17+ 17/ 41+120/ 41 -2(20) =15 =1 mod 7.
Now I find the day of my birthday.

2.4. Example My birthday date is June 27, 1973. On what day of the week
was [ born?

If A is the number of the day, then

A =27+3+73+173/ 4]+ 119/ 4] -2(19) = 87 =3 mod 7.
I was born on a Wednesday.
3. Conway's Calendar Formula

John Horton Conway has found an even simpler calendar formula. In
his system, he calls doomsday of a year that day of the week on which the last
day of February occurs. For example, doomsday 1900, corresponding to
February 28, 1900(1900 is not a leap year), is Wednesday = 3, while
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doomsday 2000, corresponding to February 29, 2000, is Tuesday = 2, as we
know from Corollary 2.3.

Knowing the doomsday of a century year 100C, we can find the
doomsday of any other year y = 100C + N in that century, as follows. Since
100C is a century year, the number of leap years from 100C to y does not
involve the Gregorian alteration. Thus, if D is doomsday 100C (of course, 0

<D< 6), then doomsday 100C + N is congruent to
D+ N+ [N/ 4] mod7.

For example, since doomsday 1900 is Wednesday = 3, we see that doomsday
1994 is Monday =1, for

34+94+23=120=1 mod7.

3.1 Proposition. (Conway's Formula). Let D be doomsday 100C, and let 0
<N<99. If N =12q + 1, where 0 <r < 12, then the formula for doomsday
100C + N is

D+q+r+Lr/4/mod7.
Proof.
Doomsday (100C+N)=D +N +| N/4 |
=D+12q+r+| (12q+1)/4]
=D+15q+r+| r/4]
=D+q+r+| r/4|mod7

For example, 94 =12x7 + 10, so that doomsday 1994 is 3 +7 + 10 +2 =1
mod 7; that is, doomsday 1994 is Monday, as we saw above.

We know doomsday of a particular year, we can use various tricks
(e.g., my Uncle Charles) to pass from doomsday to any other day in the year.
Conway observes that some other dates falling on the same day of the week as
the doomsday are

April 4, June 6, August 8, October 10, December 12,
May 9, July 11, September 5, and November 7;
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it is easier to remember these dates using the notation
4/4, 6/6, 8/8, 10/10, 12/12, and 5/9, 7/11, 9/5, and 11/7,

where m/d denotes month/day (we now return to the usual counting having
January as the first month :1 = January). Since doomsday corresponds to the
last day of February, we are now within a few weeks of any date in the
calendar, and we can easily interpolate to find the desired day.

4. The Doomsday Algorithmas a poem

John Conway introduced the Doomsday Algorithm with the following rhyme:
(1) The last of February or of January will do
(2) (Except that in Leap Years it's January 32).
(3) Then for even months use the month's own day,

(4) And for odd ones add 4, or take it away.

(5) Now to work out your doomsday the orthodox way
(6) Three things you should add to the century day
(7) Dozens, remainder, and fours in the latter,

(8) (If you alter by sevens of course it won't matter)

(9) In Julian times, lackaday, lackaday

(10) Zero was Sunday, centuries fell back a day
(11) But Gregorian 4 hundreds are always Tues.
(12) And now centuries extra take us back twos.
(13) According to length or simply remember,

(14) you only subtract for September, or November.



44 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

4.1 The Doomsday

In other words here is a simple trick that we can use to determine the
day of the week for any date of the current year. The day of the week on
which the last day of February falls is called the doomsday. For non-leap
years (or common years), this date is February 28; for leap years, it is
February 29. Since 2017 is a common year, the current doomsday is the day of
the week on which February 28, 2017 occurred; a Tuesday. Everything else
that we need follows from one simple lemma:

4.2 Lemma

Adding or subtracting any integer multiple of 7 to any date leaves the
day of the week unchanged. For example, February 7, 14, 21, and 28 all fall
on the same day of the week. Likewise, adding x days is equivalent to adding
x — 7 days, which is equivalent to subtracting 7— x days. For example, with
X = 6, the day of the week that falls 6 days after Monday, is the same as the
one that is 7- 6 = 1 day before.

4.3 The rule of January

We now use the Lemma 4.2 to identify at least one date in every other
month that falls on the same day of the week as the doomsday. We begin with
the rule of January. In a common year (like 2013) February has 28 days. By
applying the above lemma, we subtract 4 7 = 28 days from February 28 to
arrive at February 0, which must also fall on the doomsday. But February 0 is
just another name for January 31 as both dates immediately precede February
1. Thus in a common year, January 31 is the doomsday. In leap years, the
doomsday is February 29. Again subtracting 28, a multiple of 7, yields
February 29 — 28 = February 1. Thus in a leap year, February 1 falls on the
doomsday. With a touch of whimsey, this date is also called "January 32", as
both dates immediately follow January 31. Thus in leap years January 32 is
the doomsday. Alternatively, observe that

31-28=3,and 32 -28 = 4.

Thus January 3 always falls on the same day of the week as January
31; as January 4 does for February 1. Consequently, for common years (which
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come in groups of 3), the doomsday is January 3; and for leap years (which
come once every 4 years) the doomsday is January 4.

4.4 The rule of March

Since the doomsday immediately precedes March 1(for both leap years
and non-leap years), we call the last day of February "March 0". Thus, for
every year, March 0 is the doomsday. If we insist on using an actual date in
March, Lemma 4.2 implies that March 7, 14, 21, and 28 any multiple of 7) are
all doomsdays.

4.5 The rule of even months

The third line of Conway’s rhyme expresses the rule of even months.
Thus for April, the fourth month, the doomsday is on 4/4. For June it is 6/6;
August, 8/8; October 10/10; and December, 12/12. The answer follows from
Lemma 4.2 and an interesting pattern within the seemingly irregular
distribution

Jan Feb Mar |Apr May |Jun Jul |Aug Sep |[Oct Nov [Dec

31 28 31130 31} 30 31| 31 30| 31 30| 31
29

Conway observed that when eight of the months are paired as shown
(April with May, June with July, August with September, and October with
November), then together each pair contains exactly 30 + 31 =61 days. Since
adding 2 to 61 produces a multiple of 7, every doomsday in June occurs two
dates after the corresponding doomsdays in April. Likewise every doomsday
in August occurs two dates after a doomsday in June; etc. So all we need to do
is identify one doomsday in April the remainder of even months will fall like
dominoes. Using Lemma 4.2 with the rule of March we learn that March 35 is
a doomsday.

To convert March 35, we carry (just like in ordinary arithmetic) 31
days (the number of days in March) from the date column, and advance the
month. Thus,

March 35=April(35—31)=April 4.
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Likewise doomsdays fall on June 4+2=6, August 6+2=8, October 8§ + 2 = 10,
and December 10 + 2 = 12, demonstrating the rule of even months.

4.6 The rule of odd months

The fourth line and footnote in Conway’s rhyme describe the rule of odd
months. Adding 4to the index of every odd month having 31 days; and
subtracting 4 from the index of those that have only 30 days, yield the
remaining doomsdays:

Mar 3+4 = Mar 7, or 3/7,
May 5+4 = May 9, or 5/9,
Jul 7+4=Jul 11, or 7/11,
Sep 9-4 =Sep 5, or 9/5,
Novll-4=Nov 7, or 11/7,

Note that rule of odd months is consistent with the rule of March, and
that for the remaining four months, 9is paired with 5 (5/9 and 9/5), while 7 is
always paired with 11 (7/11 and 11/7). We can thus use the mnemonic
“working 9 to 5 at the 7-Eleven,” the latter being a national convenience store
chain.

The rationale for the rule of odd months follows for each odd month:
From the rule of March and Lemma 4.2, March 7, is a doomsday, Thus,
adding 4 to the index of March (3) yields the doomsday March 7 =3/7.

Next, we add 63 (a multiple of 7) to March 7, obtaining March 70. Carrying
the months of March and April in succession, yields
March 70=April(70—31)=May(70—31-30)=May 9,0r5/9.

Advancing another 63 days, yields the doomsday May 72. Again we carry
two months,

May 72=June(72-31)=July(72 — 31-30)=July 11,or 7/11.
Jul67 = Aug (67 —31)=July(67 — 31-31)= Sep5,or 9/5.
Sep68 = Oct (68 —30)=July(68 — 30 —31)= Nov7,or 11/7.

See Table 1 for a summary of the doomsdays obtained for each month.
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5. Finding the doomsday in a future or past year

The second stanza of Conway’s poem describes how to find the
doomsday for an arbitrary year. The basic fact to remember is that common
years, like 2011, 2013, and 2014, have exactly 365 days. It is easy to verify
that 365 = 7 x 52 + 1. Thus if the following year is a common year, then the
doomsday advances by one day of the week. So in 2014 the last day of
February, February 28, 2014, will fall on a Friday, and all of the dates shown
in Table 1 will be Fridays in the year 2014. Likewise, if the current year is a
common year, then the doomsday of the previous year retreats by one day of
the week. Thus, the doomsday for 2012 (February 29, 2012) was a
Wednesday.

Leap years on the other hand have 366 = 7 x 52 + 2 days. Thus if the
following year is a leap year, then its doomsday will advance by two days of
the week. And if the current year is a leap year then the previous year’s
doomsday would be two days earlier in the week. Thus, the doomsday of 2011
was Wednesday — 2 = Monday. The following table (in which leap years
appear in bold typeface) illustrates this.

Doomsdays
3or31
Jan. Rule of January Jul. 11 |Rule of odd months (7+4)
4or32
28
Feb. {29} Basic definition Aug. 8 [Rule of even months (8/8)
Rule of odd months
Mar. 7 (3+4) SePt- 3 1R ule of odd months (9—4)
Rule of even months Rule of even months
Apr. 4 (4/4) Oct. 10 (10/10)
May. 9 Rule of odd months Nov. 7 Rule of odd months (11—4)
(5+4)
Tun. 6 Rule of even months Dec. 12|Rule of even months
’ (6/6) (12/12)

Table 1: A summary of the doomsday rules applied to each month of the year.
For those dates appearing in curled braces, the upper value should be used in a
non-leap year, and the lower, in a leap year.
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Year 1988 {1989 1990 1991 1992 {1993./1994 {1995 {1996 |1997 | 1998 |1999
Doomsday | |Mon. |Tue. [Wed.|Thu. [Sat. |Sun. |Mon.|Tue. |Thu. [Fri. |Sat. |Sun.

Year 2000 {2001 {2002 {2003 {2004 {2005 |2006 2007|2008 |2009 [2010 {2011
Doomsday | |Tue. |Wed.|Thu. |Fri. |Sun. |[Mon.|Tue. |Wed.|Fri. |Sat. [Sun. [Mon.

Year 2012 2013|2014 {2015 (2016 {2017 2018|2019 2020|2021 |2022|2023
Doomsday | |Wed.|Thu. |Fri. |Sat. |Mon.|Tue. |Wed.|Thu. |Sat. |Sun. |Mon.|Tue.

Table 2: The day of the week on which the doomsdays listed in Table 1 fall
on. Leap years are identified in bold font

6. The twelve-year rule

Also note any 12-year jump forward (up to the 99th year in a century)
advances the doomsday by one day of the week for both leap or non-leap
years. Actually, we don’t need the table to figure this out. Every such 12year
period contains exactly 3 leap years, and therefore exactly 12 — 3=9 non-leap
years. So moving forward by twelve years advances the doomsday by
3x2+9x1=15 days. Subtracting two sets of 7(remember adding or subtracting
7 does not change the weekday) yields 15—14 =1. So the day advances by 1,
and thus the doomsday in 2026will fall on a Saturday. Going backwards by 12
results in a 1 day retreat, so the doomsday in2014—12=2002 was Thursday.
We’ll call this the twelve-year rule.

7. Computing the doomsday for an arbitrary year

To simplify computing the doomsday for years in different centuries,
Conway’s algorithm uses the last year of each century as a reference. It is not
difficult to verify that the doomsdays for these years obey the following
pattern, (see lines 11 and 12 in the poem):

GREGORIAN CENTURIES BY DOOMSDAY

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY[FRIDAY |SATURDAY
1700 1600 1500
2100 2000 1900 1800
2500 2400 2300 2200
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Note that every Gregorian century mark divisible by 400 is a leap year,
and has a doomsday of Tuesday. Furthermore, the doomsday retreats by two
weekdays with every advancing (non-leap year) century. The ultimate short
cut is expressed in the second stanza (lines 5-8). For July 4, 1776. Start with
the century mark 1600; the doomsday is Tuesday. Moving forward to 1700,
the doomsday falls back two days to Sunday. Now find the largest multiple of
12 that is less than or equal to 76 (that is 1776 — 700). Clearly 76 = 12 x 6 + 4.
So the doomsday advances 6 days, for the quotient, plus 4 days for the
remainder, plus 1 more day because 1776 is in fact a leap year. Thus the
doomsday of 1776 is Sunday plus 11 days, which by the lemma equals
Sunday minus three days, or Thursday. Since July 4, is always a doomsday,
July 4, 1776 was a Thursday.

Sometimes we may see the notation |76/12|=6, which means that the
greatest integer contained in the quotient 76/12 =6.333...is 6. The function
|x|is called the floor of x. Likewise, we frequently represent the remainderby
the mod, or modulus. Explicitly76 mod 12 =4. Consequently, the entire
doomsday calculation for July 4, 1776 can be written as

Sunday+|76/12]+76mod12+|(76mod12)/4|=Sunday+6+4+1=Sunday +11=Thursday.

Finally, for the Julian calendar (which was still used in English speaking
countries and colonies up to 1750), the doomsdays retreated by one day every
century.

JULIAN CENTURIES BY DOOMSDAY
SUNDAY [MONDAY [TUESDAY |WEDNESDAY | THURSDAY [FRIDAY [SATURDAY
0
700 600 500 400 300 200 100
1400 1300 1200 1100 1000 900 800
1700 1600 1500
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8. Methods for Accelerating Conway's Doomsday Algorithm

We propose a modification of a key component in the Doomsday
Algorithm for calculating the day of the week of any given date. In particular,
we propose to replace the calculation of the required expression:

{1J + xm0d12+L—Xm0d12J
12 4

with

2y+10(ym0d2)+z+{ 2

2(ymod?2) + ZJ

where x is an input 2-digit year;
y is the tens digit of x;
z is the ones digit of x;

We argue the fact that our modification operates on individual
base-10 digits makes the algorithm easier to calculate mentally.

The Doomsday algorithm's input is a calendar date of the form MM/DD/
YYYY where MM is the month, DD is the day, and YYYY is the year.
YYYY can further be broken down to its constituent century CC and year
within the century YY. The output of the algorithm is a number between 0 to
6 that corresponds to each of the 7 days for the week.

The key equation of the Doomsday algorithm can be described a
sum (modulo 7) of three terms:

day of the week = ( doomscentury + doomsyear + doomsmonth ) mod 7
where:
doomscentury(CC) is a function of the input date's century

doomsyear(YY) is a function of the input date's 2-digit year within a
century

doomsmonth(MM,DD) is a function of the input date's calendar month
and day.
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The doomsyear formula provided by Conway is:
{£J + xmod12 + L—X mod12J
12 4

where x is the input date's 2-digit year within a century. The addition is
always modulo 7, so the resulting sum is a number between 0 and 6, inclusive.

8.1 Simple Method

Let us break down the two-digit year x into its constituent digits y and z,
where y is the tens digit, and z is ones digit. That is,

=\ 76)
10
z =xmod10

For example, if x =74, then y=7 and z=4. If x = 88, then y=8 and z = 8.

Having defined y and z in terms of X, we propose the replacement doomsyear
function as

doomsyear (y,z) = 2y + 10(y mod 2) + z + leaps

where (y mod 2) is really just a decision function to tell whether y is odd or
even.

(ymod 2) =1 ifyis odd
(ymod 2) =01ifyis even

We define an extra variable called leaps as the number of leap years between
the start of the y decade and the z year. If the start of a decade is a leap year,
we don't count it. But if the year z is a leap year, we do include it. For
example, if x = 88, the decade starts at 80 and we have leaps = 2 because 84
and 88 are leap years. If x = 74, the decade starts at 70 and we have leaps = 1
because 72 is a leap year. In general, the variable leaps can only have three
values: 0, or 1, or 2. There can't be more than 2 leap years after the start of a
decade. Remember, we never include the start of the decade in our leap count.
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The explicit formula for leaps is

2(ymod 2) + ZJ

leaps =
P { 10

8.2 Examples.

Let's calculate the doomsyear term for these years:

1)

2)

3)

4)

5)

6)

1974: y=7,z=4

doomsyear =2*7 + 10*1 + 4 + leaps =14+ 10+ 4+ 1 =29 = 1(mod 7)
leaps = 1 because 1972 is a leap year

2040: y=4,z=0

doomsyear =2%4 +10*0+ 0 + leaps=8 + 0+ 0+ 0 = 1(mod 7)

leaps =0

2010:y=1,z=0

doomsyear = 2*1 + 10*1 + 0+ leaps =2+ 10+ 0+ 0 =12 = 5(mod 7)
leaps =0

1988: y=8,z=8

doomsyear = 2*8 + 10*0 + 8 + leaps =16 +0+8 +2 =26 =5(mod 7)
leaps =2 because 1984 and 1988 are leap years

2007: y=0,z=7

doomsyear =2*0 + 10¥*0+ 7 +leaps = 0+0+7+1 =8 =1(mod 7)
leaps = 1 because 2004 is a leap year

1998: y=9, z=8

doomsyear =2%9 + 10*1 + 8 +leaps =18 + 10 + 8 + 2 = 38 =3 (mod 7)
leaps = 2 because 1992 and 1996 are leap years.

Let’s define the decade anchor to be the 2y + 10(y mod 2) subexpression of
our doomsyear term. This subexpression only depends on the y decade of the
input year.

decade anchor(y)=(2y+ 10 (y mod 2) ) mod 7

Here is the table to memorize:
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y decade 2y +10(y mod 2) decade anchor
0 00’s 0 0
1 10’s 12 5
2 20’s 4 4
3 30°s 16 2
4 40’s 8 1
5 50’s 20 6
6 60’s 12 5
7 70’s 24 3
8 80’s 16 2
9 90’s 28 0

Table : Decade anchor lookup

If we memorize this simple table of 10 numbers, we can avoid
calculating the decade anchor 2y + 10 (y mod 2) component of the doomsyear
formula.

Thedoomsyeaformula is thus:

doomsyear(y,z) = decade anchor(y) + z + leaps
Let’s look at a table of possible values for the leap term depending on the
digit year z:

digit year z leaps leaps if y is even | leaps ify is odd
0 0 0 0
1 0 0 0
2 Oorl 0 1
3 Oorl 0 1
4 1 1 1
5 1 1 1
6 lor2 1 2
7 lor2 1 2
8 2 2 2
9 2 2 2

Table : Possible Values for leap
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~

year Conway's

doomsyear  +z+ leaps

2 2 2
3 3 3
4 5 5
3 B 6
8 3 3
9 4 4
10 3 3
11 B B
12 1 1
13 2 2
14 3 3
15 4 4
16 L] B
19 2 2
20 4 4
21 3 5
22 B B
25 3 3
26 4 4
27 3 3
30 2 2
31 3 3
32 5 5
33 B B
36 3 3
37 4 4
3B 5 3
39 B B
440 1 1
41 2 2
42 3 3
43 4 4
43 6 6
47 2 2
48 4 i
49 5 5
50 B B
53 3 3
54 4 4
55 5

2y +10 (ymod 2) year
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Conway's 2y + 10 (y mod 2)

doomsyear  +z+ leaps
58 2 2
59 3 3
&0 5 5
61 6 B
64 3 3
65 4 4
a6 5 5
67 B B
68 1 1
69 2 2
70 3 3
71 4 4
72 B L]

|

]
L=
= R ]
= Ly ]

Hl-—.‘l
= ]

3 3
B2 4 4
83 5 5
g6 2 2
87 3 3
g8 5 5
g9 & ]
92 3 3
93 4 4
24 5 5
93 1 &
96 1 1
a7 2 2
98 3 3
99 4 4

Table 3: Doomsyear Values from 00 to 99
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8.3 Conway’s Look-up Table Acceleration Method

John Horton Conway devised an acceleration method to speed-up the
calculation of the doomsyear term. In practice, Conway’s method is probably
the fastest acceleration method for such, but it involves memorizing 18
numbers and some non-intuitive rules. Now, we will describe Conway’s look-
up table method. And then, we will compare and contrast our method with
Conway’s acceleration method.

Conway’s lookup table method requires memorizing the years of the century
where the doomsyear value is zero. Let us call these numbers as zero-anchor
years. These are:

0 6 11.5 17 23 28 34 39.5 45

51 56 62 67.5 73 79 84 90 95.5

There’s actually the added complication of the half-numbers: 11.5,
39.5, 67.5 and 95.5. These half-numbers mean that the preceding year has
doomsyear value 6 and the succeeding year has doomsyear value 1. For
example, doomsyear (11) = 6, and doomsyear(12) = 1; doomsyear (67) = 6,
and doomsyear (68) = 1. These half-numbers occur because of the increment-
by-2 property of doomsyear values during leap years. In effect, a doomsyear
of value 0 got skipped in the half-number locations.

Here are the steps of Conway’s acceleration method:

1) Select the nearest zero-anchor year less than your input year.

2) Let z, be the difference between your input year and the selected zero-

anchor. Ignore fractional values of half-numbers in zero-anchor years.
That is, treat 11.5, 39.5, 67.5, and 95.5 as 11, 39, 67, and 95 respectively
in calculating the difference

3) Count the number of leap years between the zero-anchor and your input
year. If  the zero-anchor year is a leap year, do not include it. On the
other hand, if your input year is a leap year, include it in the leap
count. Let us denote this count of leap years as leap,
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4) Add z,and leap,to get the doomsyear value. If the selected zero-anchor is
a half- number, subtract 1 from the sum. We denote this as the anchor
adjustment term  needed for half-number zero-anchors.

To sum it all up, Conway’s acceleration method can be described by the

equation:

doomsyear = anchor_adjustment + z, + leap,

Note that the anchor adjustment term is almost always zero except for half-

number years where it has a value of —1.

8.4 Examples

1) 1974:
zero-anchor is 1973
z,=1974-1973 =1
leap, =0
doomsyear=1+0=1
2) 2040:
zero-anchor is 2039.5

z,=2040-2039=1
leap,=1 because 2040 is a leap year
doomsyear= —1+1+1=1

3) 2010:
zero-anchor is 2006
z,=2010—-2006 =4
leap,= 1 because 2008 is a leap year
doomsyear=4+1=15

4) 1988:
zero-anchor is 1984

z,= 1988 — 1984 = 4

leap, = 1 because 1988 is a leap year. Remember, we don’t count the

zero-anchor
doomsyear=4+1=15



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 57

5) 2007:
zero-anchor is 2006

z,=2007 — 2006 =1
leap,=0
doomsyear=1+0 =1

6) 1998:
zero-anchor is 1995.5

Z,= 1998 — 1995 =3
leap,= 1 because 1996 is a leap year
doomsyear=—1+3+1=3

7) 1914:
zero-anchor is 1911.5

z,=1914- 1911 =3
leap,= 1 because 1912 is a leap year
doomsyear=—1+3+1=3

8) 1972:
zero-anchor is 1967.5

z, =1972-1967=5
leap,= 2 because 1968 and 1972 are leap years
doomsyear=—1+5+2=6

9. A Comparison of Simple Acceleration Method with Conway’s

Simple method is amenable to lookup table acceleration. In fact, we claim
that after this lookup table acceleration, simple method is very similar in form
to Conway’s acceleration method. Let us compare and contrast the doomsyear
equation for simple method and Conway’s method. These are:

doomsyear(y,z) = decade anchor(y) + z + leaps
and

doomsyear(x) = anchor_adjustment(x) + z,+leap,

respectively.. Let us list down these similarities.
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1) Both equations are the sum of 3 terms. Each of these terms corresponds
with counterpart in the other method.

2) Both equations use memorization of an anchor year for the speedup. In
simple method, the starting year of the decade serves as the anchor. In
Conway’s method, years with doomsyear value of zero are used as the
anchor.

3) Both equations use z as the number of years between the input year
and the anchor year. We can consider z as the offset from the anchor.

4) Both equations contain a leap count correction term that counts the number
of leap years between the anchor year and the input year.

We now list down differences between the 2 equations and mention
some advantages of our method over Conway’s method.

1) In simple method, z is not computed. It is part of the input. In Conway’s
method, z, has to be calculated by subtracting the zero-anchor year from
the input year.

2) In simple method, one has to memorize 10 digits for the anchoring.
In Conway’s method, one has to memorize 18 numbers for the anchoring.

3) In simple method, the leap count correction term follows a regular pattern
for a given decade and is amenable to another speedup via memorization.

4) In simple method, we can always fall back to using the 2y + 10
(y mod 2) calculation if entries in the lookup table are forgotten.
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RELATIONS BETWEEN CAYLEY GRAPH AND VERTEX-
TRANSITIVE GRAPH

Aye Aye Myint”
Abstract

In this paper, we first express basic concepts of graph theory. Then
we define vertex-transitive graph and Cayley graph with a given group by
using generating set or nongenerating set. Finally, we prove that every
Cayley graph is vertex-transitive graph and we also give an example that
the converse of this theorem is false.

Keywords: graph, digraph, connected, vertex-transitive, group, order,
Cayley graph, Cayley digraph, diameter of a graph.

1. Basic Concepts of Graph Theory

A graph G = (V(G), E(G)) with n vertices and m edges consists of
a vertex set V(G)={ vi, v2, ..., va } and an edge set E(G) = { ei, ez, ..., em},
where each edge consists of two (possibly equal) vertices called its endpoints.
We write uv for an edge e = (u, v). If uve E(G), then u and v are
adjacent. The ends of an edge are said to be incident with the edge. A loop is
an edge whose endpoints are equal. Parallel edges or multiple edges are
edges that have the same pair of endpoints. A simple graph is a graph having
no loops or multiple edges. A graph is finite if its vertex set and edge set are
finite. We adopt the convention that every graph mentioned in this paper is
finite, unless explicity constructed otherwise. The degree of a vertex v of a
graph G is the number of edges of G which are incident with v . A graph is
said to be regular (k-regular) if all its vertices have the same degree (k). A
three-regular graph is also called a cubic graph. A simple graph in which
each pair of distinct vertices is joined by an edge is called a complete graph.
A complete graph on n vertices is denoted by K,. A sequence of distinct edges
of the formvovi, viva, . . ., vV is called a path of length r from vy to v,
denoted by (vo, vi)-path. The distance between two vertices u and v in a graph
G is the length of the shortest path from u to v. The diameter of a graph is the
maximum distance between two distinct vertices.

" Dr., Lecturer, Department of Mathematics, Shwebo University
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Figure 1.1: A graph G with diameter 2

A subgraph of a graph G = (V(G), E(G)) is a graph Y = (V(Y), E(Y))
with V(Y) < V(G) and E(Y) < E(G).Two vertices u and v of G are said to be
connected if there is a (u, v)-path in G . A connected graph is a graph such
that any two vertices are connected by a path, otherwise it is disconnected.

A directed graph (or digraph) G= (V(a), E(a)) consists of a finite
nonempty set V(G), called the set of vertices, and set E(G) of ordered pairs
of (not necessarily distinct) vertices, called the set of (directed) edges or
arcs. If e=(u,v)or uv is a directed edge of G, we say that e joinsu to v,
that u and v are endpoints of e(more specifically that u is the tail of e and

v is the head of ¢). A digraph G is called symmetric if, whenever (u,v) is
an arc of G , then (v, u) is also. A digraph G is called complete if for every
two distinct vertices u andvofG , at least one of the arcs (u, v)and (v, u) is

present inG . A complete symmetric digraph of order n has both arcs (u, V)

and (v,u) for every two distinct vertices u and v, denoted by K .

Figure 1.2: A complete symmetric digraph 123
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2. Vertex-Transitive Graph

Before defining a vertex-transitive graph, we express the definition of
an automorphism of a graph which plays a crucial role in determining the
vertex-transitive graph.

An isomorphism from graph G to graph G’ is a bijection

$:V(G) > V(G') such that uv € E(G) if and only if ¢(u) ¢(v) € E(G’). We
say "G is isomorphic to G'", written G = G', if there is an isomorphism from
Gto G'.

The graphs G and G’ drawn below are isomorphic by an isomorphism

that maps u, v, w, X, y, z to 1, m, n, p, q, r respectively.
i V 1 /V\p
r.

X y Z n q

Figure 2.1: Isomorphic graphs G and G’

A permutation ¢ of V(G) is a function from V(G) into V(G) that is
both one to one and onto.

An automorphism of a (simple) graph G is a permutation ¢ of V(G)
which has the property that uv € E(G) if and only if ¢(u) ¢(v) € E(G), that is
an isomorphism from G to G. The set of all automorphisms of a graph G
forms a group under the operation of composition, which is called the
automorphism group. a

d

Figure 2.2: Complete graph K,
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In Figure 2.2, there is an automorphiosm¢ of V(K,) such that
¢(a) =b, d(b) =c, ¢(c) =d, ¢(d) =, ¢(e) = a.
For any two vertices u and v of G, there is an automorphism¢ of G

such that ¢(u)=v, we say that G is vertex-transitive.

a b

d c

Figure 2.3: Vertex-transitive graph G

Now we interested in the structure of vertex-transitive graphs, in
particular, Cayley graphs. First, we have to introduce some definitions of
group theory.

3.Basic Definitions of Group Theory

A nonempty set of elements X is said to form a group if in X there is
defined a binary operation, called the product and denoted by-, such that

(i) a,b eX impliesthata -b € X (closed).
(i1)) a,b,c € X implies thata - (b -c) = (a- b) -c (associative law).

(ii1)) There exists an element ee X such thata-e=e-a=a forall a € X (the
existence of an identity element in X).

(iv) For every a € X there exists an element a'e X such that

-1 -1
a-a =a

- a = ¢ (the existence of inverses in X).
We usually write a b instead of a -b.

A finite group is a group which has a finite number of elements,
otherwise we call it an infinite group.



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 65

The number of elements in X is called the order of X and it is denoted

by O(X)or |X|.We define the order of an element x to be the least positive

integer n such that x" = e and we denote it by O(x) or |x|.

A nonempty subset S of a group X is said to be a subgroup of X if,
under the product in X, S itself forms a group.
If S is a subgroup of X, a eX, thenaS= {as|s € S} .a S is called a left

coset of S in X.

Let X be a group of permutation of a set A and beA,then the
stabilizer of b (in X) is the subgroup X, ={x e X|x(b)=b}.

A group X is called a cyclic group if there exists an element xe X,
such that every element of X can be expressed as a power of x. In that case x
is called generator of X.

Let D, :{xi y'1i=0,1; j=0,1,..,n-1; x> =e=y",xy= y"lx}.
Then D, is a group, called the dihedral group,(n=>3).0(D,)=2n.In fact,

we can write D also as

D, ={y, Vo YL YL XY, XY xY L x| X ==y, xyzy’lx}.

Let X be a group. A subsetH < X is a generating set of X if every
element of X is obtainable as the product (or sum) of elements of H.

For the group Z_ , a nonempty set of integers modulo n is a generating

set if and only if its greatest common divisor (gcd) is 1. For instance, the set
{4,7} generates Z,,, since gcd (4,7) = 1 but {6,9} does not generate Z

since gcd (6,9) = 3.

24>

If A is a finite set {1,2, . .. ,n}, then the group of all permutations of A
is the symmetric group on n letters, and is denoted by S, . Note that S has

n! elements.
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4. Cayley Graphs

Now we shall express the definitions of Cayley graphs and the
constructions of Cayley graphs with their given groups.

4.1 Definitions

(1) Let X be a group and H a subset of X not containing the identity e.
Then the Cayley digraphC has vertex set V(C) = X and arc set
E(C) = {(g, gh)| h eH, geX}. We write C= C(X, H).

(i) Let H = X—e. Then the resulting Cayley digraph will be denoted by
K=K (X, H) and called the complete Cayley digraph.

(ii1) Let X be a group and H a subset of X not containing the identity e
such that heH implies h™' €H (that is, H=H", where H'=h"'| heH}).
Then the graph with vertex set V(C)=X and edge set
E(C)={ (g, gh)|heH, geX | is called the Cayley graph C
corresponding to X, H-We write C = C(X,H). Equivalently, the

Cayley graph C = C(X, H) is the simple graph whose vertex set and
edge set are defined as follows:

V(C)=X; E(C)= { (g, h) ‘ g'heH, wherege X, heH }

(iv)When His a set of generators for X the Cayley digraph and the

Cayley graph will be referred to as the basic Cayley digraph and the
basic Cayley graph respectively.

4.2 Examples
(1) Let X be the group Zs, the set of integers modulo 5.
Let H be generating set {1}.
We can construct the Cayley digraph C = E(ZS, H) which has the vertex
set V(C) = Z,={0,1, 2, 3, 4};and the arc set EC) =40, 1),(1, 2,2, 3),3, 4),(4, 5)}.
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Figure 4.1: The Cayley digraph C(Z, {1})
(ii) Let X be the cyclic group C4 generated by a and H = {a, a°, a’}.

We can construct the complete Cayley digraph K= K(C4, H) which

has the vertex set V(IZ) =C,=1{l, a, a’, a’};and the arc set

E(K)={(La),(1a),(1.a"),(a,2"), (3,2), (8,1, (a",2"), (", 1), (2%, ), (@, ), ("), (', ")}

Figured4.2: The complete Cayley digraph K (C,,{a, a*, a’})
(11) Let X be the symmetric group S; = {1, (12), (13), (23), (123), (132)}.
Let H = {(12), (13), (23)}.
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Then H™' = H. We can construct the Cayley graph C = C(S,, H)which
has
V(©) =S;; E(0O)={(1,(12)), (1,(13)), (1,(23)), ((12), (132)), ((12), (123)),

((13), (132)),((13), (123)), ((23), (132)), ((23), (123))} .

(12)

(13)% X »(123)

(132)  (23)

Figure4.3: The Cayley graph C(S,, {(12), (13), (23)}).

4.3Theorem

The Cayley graph C(X, H) is well-defined and is connected if and
only if H is a set of generators for X.

Proof. See [7].

4.4 Examples

(i) Let X be the dihedral group D, :{1, r, 1>, 1,8, TS, IS, r3s}, where

rf=s’=1sr=r'sandH={r,s}.

Then H is a generating set for D,. We can construct the Cayley digraph
C=C(D .» H)yhas the vertex set V(E) =D,and the arc set
E(C)={(z. gh) | geD,, heH |.
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v

r 12

Figure 4.4: The connected Cayley digraph E(D 4515, S})
(if) Let Xbe Z,=1{0,1,2,3,4,5,6,7} and let H={2, 6}.

SinceH = H'and H is not a generating set, we can construct the

disconnected Cayley graph C has vertex set V(C)=Z;and edge set
E(C)={ (g gh) | geZ, heH}.

4

Figure 4.5: The disconnected Cayley graph C(Z;,H)

In the above examples, we see that if the subset H is a generating set
for the given group then the Cayley digraph is connected and if H is not a
generating set then the Cayley graph is disconnected.
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5. Relations between Cayley Graph and Vertex-Transitive Graph

In this section, we interested in a relation between Cayley graph and
vertex-transitive graph.

5.1Theorem
Every Cayley graph C(X, H) is vertex-transitive.
Proof.
For each g in X we define a permutation (I)g of V(C)=X by the rule
¢, (h)=gh,heX.
This permutation ¢, is an automorphism of C , for
(h,k)eE(C)= h'keH
= (gh)fl (gk)eH
= (4, (h). ¢, (k)) E(C)
Now forany h,k € X, ¢, (h) = (kh‘l)h =k.

Hence Cayley graph C(X, H) is vertex-transitive.

5.2 Petersen graph

The Petersen graph P(5,2) is a cubic graph having a vertex set
V={Ups-rs Uy Vpor v} and an edge set E={(u,u,,),(u,v),(v,,v,,)[i=0....4)
where all the subscripts are taken modulo 5. The generalized Petersen graph
P(n,k)(n>5, O<k<n)is the cubic graph having a vertex set
{Ugserlly 1, Vg5V, ;| and an edge set {(ui,um),(ui,vi),(vi,vm)|i:0,...,n—1}

where all the subscripts are taken modulo n.
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Figure5.1: The Petersen graph P(5, 2).

The following is an example of a vertex-transitive graph which is not a
Cayley graph.

5.3 Example
The Petersen graph is vertex-transitive but it is not a Cayley graph.
Indeed, we can see the diameter of the Petersen graph is 2 and the
diameter of a Cayley graph C= C(X, H) is the smallest positive integer n
such that X=HUH U... UH" where H :{hk|h, keH} and H = H™H for i>3.

We now show that all the Cayley graphs of order 10 having degree 3
are of diameter greater than 2 and so none of them is the Petersen graph.

There are two groups of order 10. The first one is the cyclic group Z,,
and the second one is the dihedral group D,. The group operation here are
additions and we replace H™' by — H.

Case 1.

X=7,={0,1,.., 9}.

Since — H=H and | H | =3, 5e Hand H can only be one of the following four

sets
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H ={159}, H,={2,5,8},
H, ={3,5,7}, H,={4,5,6}.

Now |Hi +Hi| =5 foreachi=1, 2, 3, 4.
Thus the diameter of C is greater than 2.
Case 2.
X=D;={0,b,2b, 3b,4b,a,a+b,a+2b,a+3b,a+4b} where 2a =0, 5b =0
and b +a=a+4b.

In this case a, a+ b, a + 2b, a + 3b and a + 4b are the only elements of
order 2 in X.

Hence H can only be one of the following three types of sets

{atjb,b,4b}, j=0,1,2,3,4;

oo
I

e
I

{a+jb,2b,3b}, 7=0,1,2,3,4;
H,= {atjbatjbatjb}, 0<j<j<j<4
Now |H1+Hi|=5 foreachi=1, 2, 3.

Thus the diameter of C is greater than 2 also.
Petersen graph is a vertex-transitive graph but it is not a Cayley graph.

From the above example, we see that every vertex-transitive graph is
not a Cayley graph. But every vertex-transitive graph can be constructed
almost like a Cayley graph. This result will be shown in Theorem 5.5. We
shall apply the following theorem to prove Theorem 5.5.

5.4 Theorem

Let S be a subgroup of a finite group X and let H be a subset of X such
that H'=HandHNS=.If G is the graph having vertex set V(G) = X/S
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(the set of all left cosets of S in X) and edge set E(G) = {(XS, yS)|x'ye SHS},

then G is vertex-transitive.
Proof.
We first show that the graph G is well-defined.
Suppose that (xS, yS) € E(G) and x,S=xS, y,S=yS.
Then x, =xs, y, = yk for some s,k €S.
Now x'yeSHS=>(xs)'(yk)eSHS
= x,'y, e SHS
= (x,8, ¥,8) € E(G).
Hence the graph G is well-defined.

Next, for each g e X we defined a permutation ¢, of V(G)= X/S by
the rule such that ¢, (xS)=gxS, xSeX/S.

This permutation ¢, is an automorphism of G, for
(xS, yS) e E(G) = x"'yeSHS
= (gx)"'(gy) € SHS
= (gx8, gyS) e E(G)
= (9,(x9), §,(¥9)) € E(G).
Finally, for any xS, ySe X/S, ¢ . (x8)= yx ' (xS) = yS.

Hence the graph G is vertex-transitive.

The graph G constructed in above theorem is called the group-coset
graph X/S generated by H and is denoted by G(X/S,H).
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5.5 Theorem

Let G be a vertex-transitive graph whose automorphism group is A.
Let H=A, be stabilizer of be V(G). Then G is isomorphic with the group-

coset graph G(A/H, S) where S is the set of all automorphism x of G such
that (b, X(b)) e E(G).
Proof.

We can see that S =S and SMH = @.

We now show that ¢: A/H—>Ggiven by ¢(xH)=x(b), where xHe A/H,
defines a map.
Suppose xH = yH.

Then y =xh forsome y € H.
¢o(yH) = y(b) = (xh)(b) = x (h(b)) = x(b) = d(xH).

We next show that ¢ is a graph isomorphism.

Suppose ¢(xH) = ¢(yH).
Then x(b) = y(b)

y 'x(b)=b
y'xeH
x € yH
yH = xH.
So ¢ is one to one.

Let ¢ be a vertex of G.

Since G is vertex-transitive, there exists z in A such that z(b)=c
Thus ¢(zH) =z(b) =c.

So ¢is onto.
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Next (xH, yH)e E(G(A/H,S)) < x'yeHSH
& x 'y =hzk for some h,keH, ze$S
sh'xyk =2
& (b, h'x'yk ™ (b)) € E(G)
& (b, x'y(b)) e E(G)
= (x(b), y(b)) € E(G)

< (¢(xH), ¢(yH)) € E(G).

Thus G is isomorphic with the group-coset graph G(A/H, S).
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GRAPHS WITH THE SPECIFIED EDGE GEODETIC
NUMBERS

Kyaw Lin Aung!, Tin Mar Htwe?

Abstract

Firstly we state some properties of the edge geodetic number of the
connected graphs. Then the edge geodetic numbers of some special graphs
are derived. Next we study the graphs with the edge geodetic number 2. We
also state the necessary and sufficient conditions for a graph G with n
vertices to have the edge geodetic number g.(G) =n — 1 org.(G) = n. Finally
we characterize the graphs which have the specified edge geodetic numbers.

Keywords: Edge geodetic cover, Edge geodetic basis, Edge geodetic number

1. Some Properties of the Edge Geodetic Number of a Connected Graph
In this section, being based on [1] through [4], we state the following
basic results of the edge geodetic number of a connected graph.

1.1 Definitions.

An edge geodetic cover of a graph G is a set SCJ where V is the set of
vertices of G such that every edge of G is contained in a geodesic joining
some pair of vertices in S. The edge geodetic number g.(G) of G is the
minimum order of its geodetic covers, and any edge geodetic cover of order
g.(G) is an edge geodetic basis. If S is an edge geodetic basis of G and a
vertex x € S, then x is called a basic vertex with respect to the basis S.

1.2 Example.

Vs V4

V6 V3

v V2
! Figure. 1

1. Assistant Lecturer, Department of Mathematics, Sittway University,
2 Professor(Head), Department of Mathematics, Taungoo University
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Consider the graph G shown in Fig. 1, any vertex set S containing two
vertices from { vi, v2, v3, v4, Vs, v6} 1S not an edge geodetic cover. Thus,
2(G) = 3.

If § = { v, v3, vs}, we can see that it is not an edge geodetic cover of
G.Butif § = { v, v4, vs}, it is an edge geodetic cover of G and has minimum
order. Thus the edge geodetic number g.(G) of G is 3 and S is an edge
geodetic basis of G and v2, v4, vsare basic vertices with respect to S.

1.3 Remark. The edge geodetic number of a disconnected graph is the sum of
the edge geodetic number of its components. Thus we will consider only
connected graphs in the next sections.

1.4 Theorem. For every nontrivial graph G of order n, 2 < g.(G) <n.

Proof. An edge geodetic cover needs at least two vertices and therefore
ge(G)> 2. Clearly the set of all vertices of G is an edge geodetic cover of G.
This means that g.(G)<n. Thus 2 < g.(G) <n.

1.5 Theorem. Each extreme vertex of G belongs to every edge geodetic basis
of G.

Proof. Let x be an extreme vertex of a connected graph G.
Suppose W CV is any edge geodetic basis of G and x&WV.

Then there are two vertices ui, vi in W such that the shortest path
between them must contain x, say P: ui . .. uxv. .. vi.

Since x is an extreme vertex, u and v are adjacent. Moreover, the other
path O: u1. . .uv. . . v exists between u1 and vi having length, one less than the
path P, and will not contain the edges ux and xv.

It contradicts the facts that P is the shortest path and /7 is an edge
geodetic basis of G.

Hence x € W.
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1.6 Corollary. Each pendant vertex of G belongs to every vertex geodetic
basis of G.

Proof. Every pendent vertex is an extreme vertex.

It completes the proof.

1.7 Theorem. For any graph, no cut vertex of G belongs to any edge geodetic
basis of G.

Proof. Let x be a cut vertex of a connected graph G and WCJ be an edge
geodetic basis of G.

Suppose xeW.

Since x is a cut vertex, G — x is disconnected and suppose that G — x
consists of k components G1, Ga, . . .,Gr where k> 2.

Obviously W contains at least one vertex y; (being adjacent to x) of
each component G;, i =1, 2, .. .,k

Otherwise, W will not be the edge geodetic cover of G.
Consider the set W\{x} and any edge uiu2€EE where u1#x, ur#x.

Then uiuo is on a shortest vw-path in G where v, weW. If v£x and w#x,
then u u> lies on a shortest vw-path where v, we W\ {x}.

Suppose v = x and w = y; where y,€ G;. Then uu> is on a shortest xy;-
path, say P.

Consider the vertex y; of G; where j#i. Let O be a shortest yx-path.

Then the union of P and Q is a shortest y;y5-path say R, both xu; and
uiuzlie on R. It follows from these discussions that W \{x} is an edge geodetic
cover of G.

This contradicts to the hypothesis that 7 is an edge geodetic basis of
G.

Hence x & W.

The proofs of Theorem 1.5, Corollary 1.6 and Theorem 1.7 can also be
seen in [4].
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From Theorem 1.4, Theorem 1.5 and Theorem 1.7, we obtained the following
theorem which states the bounds of edge geodetic numbers of a graph.

1.8 Theorem. For any graph G of order n with m extreme vertices and & cut
vertices, max {2, m} < g(G)< n — k.

By applying above theorems, we derive the edge geodetic numbers of
some well-known graphs that are described in Theorem 1.9 to Theorem 1.13.

1.9 Theorem. The edge geodetic number g.(P,) of any path Pyis 2.

Proof. Every path has two extreme vertices. Thus the number of extreme
vertices of the path P, is 2.

By Theorem 1.8, g.(P,) > max {2, 2}
=2.
Moreover the path P, has n — 2 cut vertices.
By Theorem 1.8, ge(Py) <n—(n—2)
=2.
Hence, g(P,) =2.

1.10 Theorem. The edge geodetic number of any tree is the number of its
pendant vertices.
Proof. Consider the tree 7 with n vertices and m pendant vertices. Every tree
has at least two pendant vertices and every pendant vertex is extreme vertex.
Thus m > 2.

By Theorem 1.8, ge(T) > max {2, m}

=m.
Moreover, every vertex in a tree is either pendant vertex or cut vertex.
Hence, the number of cut vertices of the tree 7 is n — m.
By Theorem 1.8, g(T) <n— (n—m)
= m.

So, we get go(T) = m.
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1.11 Theorem. The edge geodetic number of an even cycle is 2 and of an odd
cycle is 3.

Proof. Let C be a cycle with 2n vertices vi,v2, . . ., v2,, in order.

Let W = { vi, va+1}. Then every edge of C is contained in a shortest
path joining the vertices of W. Therefore I is an edge geodetic cover of C and
so gl O)<|w|=2.Since g C)>2, go(C)=2.

Let C be a cycle with 2n + 1 vertices vi, v2, . . .,vau+1 In order.

Let W = { vi, vu+1, va + 2}. Then every edge of C is contained in a
shortest path joining the vertices of /. Therefore W is an edge geodetic cover
of Candso g« C)< | W| =3. Since go( C) =2, g C)=3.

1.12 Theorem. For the complete graph K,(n> 2), g«(K») = n.
Proof. Consider the complete graph K.

In any complete graph every vertex is extreme vertex and no vertex is
cut vertex. By Theorem 3.11, g.(K,) > max { n, 2}

=n.
And ge(Kn) <n—0
Hence, ge(Kn) = n.

1.13 Theorem. For the complete bipartite graph G = K, »,
g(G)=2ifm=n=1;
g(G)=nifm=1,n>2;
go(G) =min {m, n} if m, n>2.
Proof. (i) For m =n =1, Kj,11s a path P> and hence g.(K1,1) = 2.
(i1) For m = 1 and n> 2, consider K1 .
K1, has n extreme vertices and only one cut vertex.
By Theorem 3.11, max {n, 2} < gu(Kis) <(n+1)—1
n < gl(Kin) <n
ge(Ki1,) =n.
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(i11)) Now consider K, ,for m, n> 2 and suppose m=<n.

The Ky,» can be decomposed as follows:

Km,n:
Vi
V2
&)
Ym
Y1 uir vi
V2 V2 uz
° o
V3 V3
L] L]
L] L]
L] L]
Vm Vm
(b) (©

Figure. 2
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Now, ge(Km,n) = ge‘( U Km,l)
= minimum order of edge cover of U K1

= minimum order of union of edge geodetic cover of K1

= minimum order of U { vi, v, ..., vm }
n

= minimum order of { vi, v2, ..., Vi }

= m.

The proofs of theorems from Theorem 1.10 to Theorem 1.13 can also
be seen in [4].

2. Conditions for Graphs to Have Some Specified Edge Geodetic
Numbers

In this section, we study some theorems that characterize graphs for
which the edge geodetic number g.(G) is 2and some necessary and sufficient
conditions of a graph G with n vertices to have the edge geodetic number
2(G) =n—1 org(G) = n. We mainly refer to [5].

2.1 Theorem. For a connected graph G, g.(G) = 2 if and only if there exist
peripheral vertices u# and v such that every edge of G is on a diametral path
joining u and v.

2.2 Theorem. If G has exactly one vertex v of degree n — 1, then g.(G)=n — 1.

2.3 Corollary. If G has exactly one vertex v of degree n — 1, then G has a
unique edge geodetic basis consisting of all the vertices of G other than v.

Proof. Let G be a graph with n vertices and suppose the vertex v is the only
one vertex of degree n — 1. By Theorem 2.2,g.(G) =n — 1.

Since d(v) =n — 1 , v must be adjacent to the remaining vi, v2, . . .,Vao—1
vertices of G. It means that v is on the shortest path with length 2 of any two
vertices of S = { vi, va, . . ., va_1}. In other words, all the edges of G which join

v with each of vi, v2, . . .,v,—1 are on the shortest path of any two vertices of S.
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On the other hand, each edge joining any two vertices from vi, v, . .
.,vn— 1does not lie on any geodesic joining two vertices of S other than
themselves. Thus S is a geodetic cover and g.(G) <n — 1. But g.(G) =n— 1 and
S is the geodetic basis of G. Since v is the exactly only one vertex of degree n
— 1, S is a unique edge geodetic basis consisting of all the vertices of G other
than v.

2.4 Theorem. Let G be a graph of order n> 3. If G contains a cut vertex of
degree n — 1, then g.(G) =n — 1.

Proof. Let v be a cut vertex of G of degree n — 1. It must be the only such
vertex. For, suppose u be another cut vertex of degree n — 1. So, u will be
adjacent with the remaining n — 1 vertices of G. Although we remove v from
G, G will bestill connected. It contradicts that v is a cut vertex. Sov is the only
vertex of degree n — 1 and hence by Theorem 2.3, g.(G) =n — 1.

Now we discuss the edge geodetic number of a graph having more
than one vertex of degree n — 1.

2.5 Theorem. If G has more than one vertex of degree n — 1, then every edge
geodetic cover contains all those vertices of degree n — 1.

2.6 Theorem. For any graph G with at least two vertices of degree n — 1,
gAG) =n.

2.7 Theorem. For positive integers r, d and [ > 2 with » <d < 2r, there exists
a connected graph G with rad G=r, diam G=d, g(G) =L

3. Constructions of Graphs with the Specified Edge Geodetic Numbers
From the previous sections, we can construct some graphs which have
the specified edge geodetic numbers.



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 85

3.1 Graphs with the given the edge geodetic numbers

For any positive integer / > 2 , the graphs with the (d + r + [ — 2)
vertices have the edge geodetic number go(G) = [ where r < d < 2r is as
follows:

G: eeo o Vor
Vr+1 Uuo ui Ud—r-1
) Ziudr
wi . »
) o ° Wi-2
V2

w2

Figuer. 1

3.2 Graphs with the edge geodetic number 2
(1) For the edge geodetic number g.(G) = 2, the graph is stated below.

G: Vs Ve

Uuo Ui uz
V4

V3 V2

Figure. 2

(2) For the pathP, with n vertices, the edge geodetic number is g.(Pr) = 2.

Vi v Vn-1 2
P.: e o ® ocococ @ ® ®
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(3) For the even cycle C,with 2n vertices, the edge geodetic number is
ge(C2n) =2.

2ne V1
Van Va
. .
. .
[ ] [ ]
Vn+1
Figure. 4

(4) The cube O, with n vertices has the edge geodetic number is ge(Qn) = 2.

02 100 101
0::
00 01
000 001
10 11
010 011
110 111

Figure. 5
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3.3 Graphs with n vertices having the edge geodetic numbern — 1

(1) The star with n vertices, say Ki,,—1 has the edge geodetic number n — 1.

Figure. 6

(2) The wheel with n vertices, say W1,,-1 has the edge geodetic number n — 1.

Figure. 7

3.4 Graphs with n vertices having the edge geodetic number n
(1) The complete graph, K, has the edge geodetic number 7.

Vi Vs
Ka:

Vi
Ks:

Vi V2

V
V2 3 1% V3

Figure. 8
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m™ LEVEL HARMONIC NUMBERS

Aung Phone Maw' and Aung Kyaw

Abstract

We define m™ level harmonic numbers as a generalization of harmonic
numbers. Then we construct the table of m" level harmonic numbers which
is like the Pascal’s triangle. A formula for m™ level harmonic numbers
containing binomial coefficients, as a generalization of Euler’s formula for
harmonic numbers, is also presented. From this formula, we also derive
some relations between harmonic numbers and binomial coefficient.

m'™ Level Harmonic Numbers

e . . S|
For a positive integer n, a harmonic number /), is defined as H, = Z—. Here
k=1

we define m™ level harmonic number as follows:

=1 o
H"=1; H" = ZEHE’""” for any positive integer m.

k=1

Since HH=Z%=Z%'1=Z%H;°)=H§”, one can see that m™ level
k=1 k=1

k=1
harmonic number is a generalization of a harmonic number.

Table of m'™ Level Harmonic Numbers

From the definition of m™ level harmonic number, H#'® =1 and H!™ =1. For

every n>2 we have

1 First year student, Department of Mathematics, University of Yangon
2 Professor, Department of Mathematics, University of Yangon
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n

H™ = Z

k=
e

(m—1)
Hk

LN

= =

1
(m-1) (m-1)
H, +;Hn

k=1

1
(m) _ ry(m) (m-1)
Hn _Hn—l +;Hn

From these facts we can construct the table of m™ level harmonic numbers like
Pascal’s triangle as follows:

"o 1| 2|3 4
n

1 1 1 1 1 1
3 7 15 31

: S B

3 1 8 1 5n 1387
6 36 216 491

A | 25 | 415 | ssas | 12456839
12 | 144 | 1728 | 3393792

H,")
In the above table, H!™ can be calculated as 2

1 +
X—
Hn(m—l) n H’(lm)

m'™ Level Harmonic Numbers and Binomial Coefficients

Euler’s formula for harmonic numbers containing binomial coefficients is

n 1(n
H :H(l): _1 k+l_ )
~HP =3 k@

We will show that

n 1 n
H(m): _1 k+1_ ,
@ -3 km[kj
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this formula can be seen as a generalization of Euler’s formula for harmonic
numbers.

Proof. We will prove by induction.

‘ 1
When n=1, " =1=Y (- - (kj
k=1

When m=0, H'” =1 and

S gl R G

Therefore H” = 2( ! 0(")
k=1 k" \ k

Now we will show that the formula is true for 7", n>2,m>1, by

assuming that the formula is true for H ") and H"". Since

1 _
H™ =H" +—H"", then
n

1
(m) _ py(m) (m-1)
Hn - Hn—l +_Hn

2 k+l 1 ( j Z( 1)k+1 km 1 ( J
- k+1 1 n— k n+l - k+1 n
kz -1) ; ( j (-1 o 1+Z( 1) k””[k}r

_n7 - k+1L(7’l—k)+k n 3 'H'li
=> (-1 T — (k]ﬂ 1) e

C k+l1 n+11
k:l( ) k"’[j S

—_

=~

=
— —
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Harmonic Numbers and Binomial Coefficients

< 1(n ) .
From the formula H" :Z(—l)k“k—m(kj, one can derive some relations

k=1

between harmonic numbers and binomial coefficient as follows:

nl 2 _ k-1
S =2 =3 ke U

k=1

kl i=1 k=1

S-S a2 =3k

n

> HL(H,~H, ) - Z (Z H)= Z (D’“U

k=1

Other formulas involving harmonic numbers and binomial coefficients

can be found in [1, 2, 3] and others.
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DECOMPOSITION OF COMPLEX VECTOR SPACE ("
INTO INVARIANT SUBSPACES

Myint Myint Maw"
Abstract

This paper study the existence of eigenvalue for every linear
operator on a finite-dimensional complex vector space. In this paper, we
will discuss although eigenvectors corresponding to distinct eigenvalues are
linearly independent, they can not span the complex vector space. Then we
give decomposition of complex vector space (" into generalized
eigenspaces and Jordan subspaces.

Keywords: Invariant subspace, Jordan chain, Generalized eigenspace,
Jordan subspace

1. Eigenvalues and eigenvectors

Throughout the paper, V' denotes n-dimensional complex vector space.

1.1 Definition. Let 4 :J—V be a linear operator. A subspace Mc/V is called
invariant for the linear operator 4, or A-invariant, if Axe M for every vector
xeM.

Trivial examples of invariant subspaces are {0},V, Ker 4 = {xeV | Ax = 0}
and
Im A= {4Ax|xeV}.

1.2 Definition. Let A: V—J be a linear operator. A number A€C is called
an eigenvalue of A if there exists xeV such that x# 0 and 4x = Ax. The vector
x is called an eigenvector of A corresponding to A.

1.3 Theorem. Let 4 :’—V be a linear operator and A€ C. Then the following
are equivalent:

(a) Ais an eigenvalue of 4.

(b) A4 - Alis not injective.

* Lecturer, Department of Mathematics, Dagon University
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(©) A — Al is not surjective.
(d) A — Al is not invertible.
Proof. A is an eigenvalue of 4 <> JveV such that v 0 and Av = Av.
SA-A)v=0
< A — Al is not injective.
Thus conditions (a) and (b) are equivalent.

Clearly conditions (b), (c¢) and (d) are equivalent.

1.4 Theorem. Every linear operator on a finite-dimensional complex vector
space has an eigenvalue.

Proof. To show that 4 has an eigenvalvue, choose a non-zero vector ve V. We
consider the n + 1 vectors v, Av, A%v, ...,A" v. Since the dimension of Vis n, v,
Av, A%v, ..., A" v are not linearly independent.

Thus there exist complex numbers ao, ai, ...,an, not all zero such that apv + a1v
+...ta,A"v=0.

Make the a’s the coefficients of a polynomial, by the Fundamental Theorem
of Linear Algebra which can be written in factored form as

avtaz+...taZ"=c(z—n)... (- )m), m<n

wherem is largest positive integer such that a,# 0, ¢ is a non-zero complex
number, each y is complex and equation holds for all complex z. We then
have

apv +aiAv+ ... +a,A"v = 0
(al +arA+...+a, A"yv =0
(cA—nl) ... (A— D) v = 0.

We know that the composition of injective mappings is injective and v# 0.

Thus A — y/ is not injective for at least one j. In other words, 4 has an
eigenvalue.
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1.5 Proposition. Non-zero eigenvectors corresponding to distinct eigenvalues
of A4 are linearly independent.

Proof. Suppose that A1, ...,4, are distinct eigenvalues of 4 and v, ..., v, are
corresponding non-zero eigenvectors. We need to prove that vi, ...,v, are
linearly independent. Suppose that ai, ...,an are complex numbers such that

aivi + ... + amvm = 0. Apply the linear operator (4 — A2l) (4 — A1) ... (A — Anl)
to both sides of the equation above,

(A= oDy (A= Amd) ... (A= A D) (@1 + ... + Gm) = O.

Since we have (4 — 4; ) vy =0, j = 1,2, ..., m and two polynomials in the
same linear operator are commute, then we have

(A=) (A-AI) ... (A= Anl) (a1v1) =0.
But (4 — A4) vi= Avi — 4; () = Aivi — 4vi = (A1 — 4)vi for j= 1.

Thus a1 (A1 — A2) (A — A3) ... (&1 — Am) vi = 0. Since A’s are distinct
eigenvalues and v; is non-zero eigenvector, we get a1 = 0. In a similar fashion,
a; =0 for each ;.

1.6 Definition.  Suppose A4 V=V and AeC. The eigenspace of A
corresponding to A, denote by E(A, A), is defined by E(A4, A) = Ker (4— Al).

1.7 Theorem. Suppose V' is finite-dimensional and 4: V—V. Suppose also that
A1, ..., Am are distinct eigenvalues of A. Then E(Ai, A) + ... + E(Am, A) is a
direct sum and dim E(A1, A) + ... + dim E(An, A) < dim V.

Proof. We know that the null space of each linear mapping on ¥V is a subspace
of V.

Thus E(A1, A) + ... + E(An, A) 1s a subspace of V.

Take any xe E(11, A) NE(4;, A) for i#j.

So (A— Ai)x =0 and (4— 4) x=0.

Ax = Ai xand Ax = A;x this implies that 4; x = 4;x so (4i— 4)x=0.
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Since A’s are different, we get x = 0. Thus E(A1, 4) + ... + E(An, A) is a direct
sum of V.

Hence dim(E(41, A)+... +E(Am, A)) = dim E(L1, A) +...+ dim E(Am,A4) < dim V.

1.8 Remark. Non-zero eigenvectors corresponding to distinct eigenvalues of
A need not span V.

1.9 Example. The linear operator 4 :C>—C%defined by A(w, z) = (z, 0).
vV (w, z) #0, 0) and VA= 0in C, A (w, 2) # (z, 0).

Thus to get A(w, z) = 4 (w, z), 4 =0 is forced, and so 0 is only eigenvalue of
A. The set of eigenvectors corresponding 0 is {(w, 0) €C?) | weC} it is one
dimensional subspace of C2. Clearly (w, 0) cannot span C2.

2. Generalized Eigenspaces

2.1 Definition. Let A be an eigenvalue of a linear operator 4 : C"—>C". A

chain of vectors xo, x1, ...,Xx 1s called Jordan chain of A corresponding to A if
xo# 0 and the following relation hold:
Axo = Axo
Ax1— Ax1 = Xo
(1) Axo— Ax2 = x1
Axk— Axk = Xi-1
Xo is an eigenvector of 4 corresponding to A. The vectors xi, ..., xx are called

generalized eigenvectors of A corresponding to the eigenvalue A and
eigenvector xo.

Equation 2.1(1) can be written (A—Al)xo = 0,(4 — Al) x1= xo,..., (A—AD)xk = Xj-1.
So(A—ADxo=0, (4 —AD*x1=0,(4d—A’x2=0, ..., (4 — AI)"'xx = 0. Thus

we way calculate a Jordan chain into the form (4 — Al)*xx, (4 — AD 'y, ...,
(A4 — AD) xk, Xk.



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 97

2.2 Definition. The subspace Ker (4 — Al) ?, integer p> 1 is called the
generalized eigenspace of A corresponding to eigenvalue A of A if Ker
(A4 — Aly= Ker (4 — AP for all integer i>p and is denoted by Rz (4). So
R (4) = Ker (4 — Al)? is the biggest subspace in (1). Since p<n we also have
Ri(A)={xeC" | (4 - Al)'x=0} =Ker (4 — AI)".

2.3 Proposition. The generalized eigenspace R (4) contains the vectors from
any Jordan chain of 4 corresponding to A and Ri(4) is A-invariant.
Proof. Let xo, ...,xx be a Jordan chain of 4 corresponding to A. Then
(A— DX = (4= ADF (A4 — Ad) xx
= (4 - AD"p1 = (4 — AD x40

= (A-A)xo
= 0.
Hence x;eRi(A4), i=0, ..., k.
If xe Ker (4 — Al)", then (4 — Al)"x = 0.
Thus (4 — A)" (Ax) = A((A — Al)"x) = A0 = 0.
Hence Ri(A4)=Ker (4 — Al)" is A-invariant.
2.4 Lemma. For any eigenvalue A of 4, then (the restriction linear operator of
Aon R (A4)), A| R, (4) has only one eigenvalue A.

Proof. Let A’ be eigenvalue of 4|z 4.

Then there exists nonzero eigenvector xeRi(A) such that 4x= A'x. Then
A-ADx=Ax—Ax=UN-A)x

(A= ADx = (A — Al (A — Ax = (A — (A — Ax = (2 — )x and s0 on, thus
we have (4 — A" = (A — )*x for each positive integer k. Since x is
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generalized eigenvector of 4 corresponding A, for some /, then (1’ — 1)’= 0,
thus we have 1A' = 4.

2.5 Lemma. If A4 : C">(C" be a linear operator, then non zero generalized
eigenvectors corresponding to distinct eigenvalues of A are linearly
independent.

Proof. Suppose Ai, ..., An are distinct eigenvalues of 4 and v, ..., v, are
corresponding non zero generalized eigenvectors. Suppose

(1) avi+ ...+ amvy,=0 for some scalars ai, ..., an.

Let k be the largest non negative integer such that (4 — Ai)vi= 0 and
(A — uD)*vi=w. Thus (4 — L)) w = (4 — LD)''vi = 0 and hence Aw = Liw.
Thus (4 — A) w= iw — Aw= (11 — Yw, VAeC. So (4 — AD)'w = (11 — A)'w,
VAeC, where n = dim C". Apply the linear operator

(A= ADf (A= AaD)" ... (A= AnD)" to (1)

(A= ADf (A= JaD)" ... (A= And)' @1 + ...+ am vm) =0
ar (A — D (A = Jal)" ... (A — Anly'vi = 0
ar(A—AaD)... (A= dn I'w=0

ar (A1 — 2a)'... (A1 — Am)'w = 0.

This implies that a1 = 0. In a similar fashion @; = 0 for each j. Thus vi, ..., vu
are linearly independent.

2.6 Lemma. Given a linear operator 4 : C"—>C" with an eigenvalue A, let ¢
be a positive integer for which Ker (4 - A)?= Ri(R). Then the subspace Ker (4
— Al)?and Im (4 — Al)? are direct complements to each other in C".

Proof. Since dim Ker (4 — A)? + dim Im (4 — Al)?= n, we have only to check
that Ker (4 — Al)?" Im (4 — A7 = {0}.

For a contradiction, assume that xe Ker (4 — Al)?N Im (4 — AD)?, x# 0.

Then x = (4 — Al)?y, for some y and (4 — AIy" x = 0 and (4 — Al)'x# 0 for
some integer #> 1. Thus (4 — A7 y = 0 and (4 — A" 'y= 0. So Ker
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(A — A7+ Ker (A4 — A7, This contradicts to definition of generalized
eigenspace.

2.7 Theorem. Let Ai, ..., A be all the different eigenvalues of a linear
operator 4 : C"—>C". Then (" decomposes into the direct sum

C" =R, (A)+...+ R, (A).

Proof. For n = 1. let A be an eigenvalue of A4, then there exists v= 0 in C”
such that 4v = Av. Since {v} is a basic of C", for each xeC"(4 — Al)x

= (A— A for some ueC. So we have (4 — Al)x = pulv — Auv = 0. Then
x€Ri(A). Thus C" =R, (4).

Let n> 1. Assume that the result holds for dimensions k=1,2, ..., n— 1.
Consider the eigenvalue A1.

C'=Ker (4 - Al)' +Im (4 - L))" = R, (4)+U. We know that Im (4 — 11"
= Uis A-invariant. Since R, (4)#0, we have dim U<n. By Proposition 2.3,
there does not exist generalized eigenvectors of 4|, corresponding to the
eigenvalue A1. Thus each eigenvalue of A4 |, corresponding to the eigenvalue

A1. Thus each eigenvalue of 4|, is in {4, ...,4;}. By induction hypothesis
U=R, (Aly)+---+R, (4]y). Thus c" =R, (A)+R), (4 |U)+"'+R/1,(A l)-
So we show that R;, (A) =R, (A|;) for k=2, ...,m. Take a fixed integer
ke {2, ..., m} and clearly R;, (Al c R, (A). Assume R;, (Aly)# R, (A).
Then there exists ve R, (4) but v R, (4|,). So we get veRﬂj (A|;) for
some j#k and hence veRﬂj (A). Thus veR/ik (A)lej (A). This contradicts

to lemma 2.5. So R, (4)=R, (4|,). Thus C" =R, (A)+:--+ R, (4).
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c "

R, (4

Ry, (4)

R; (4)
Figure 1

3. Jordan Subspaces

3.1 Definition. An A-invariant subspace M is called a Jordan subspace
corresponding the eigenvalue Ao of 4 if M is spanned by the vectors of some
Jordan chain of 4 corresponding to Ao.

3.2 Proposition. Let 4 : C"—>C" be a linear operator. Let xo, x1, ..., xx be a
Jordan chain of a linear operator 4 corresponding to Ao. Then the subspace
M = Span {xo, ..., xx} 1S A-variant.

Proof. We have 4xo = doxoe M where Ao is the eigenvalue of 4 and for i =1,
vy k, Axi = Aoxi + xi.1e€M. Hence M is A-invariant.

3.3  Theorem. Let 4 : C"—>C" be a linear operator. Then there exists a
direct sum decomposition

(1) C'=M+..+ M,

where M; is a Jordan subspace of A4 corresponding to an eigenvalue
Ai (A1, ..., Ap are not necessarily different).
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Proof. Assume A has only one eigenvalue Ao, (possibly with there are more
one eigenvalue, all equal to Ao).

Let Y, =Ker (4 — AolY, j=1,2, ..., m, where m is chosen Y, = R/10 (A) and
Y, # Ry (A). So Yichc ... Yy Let X, x") s a basis of ¥, modulo

Y. So x,(,p,. ..,x(t’") are linearly independent in set Y, such that

(2) Y, , +Span {x(l) ,x,(,fm)} =Y, (the sum is here direct)

Claim that the mt, vectors (A—A,))xWV ... (4=2,D x") k=0, ..., m-1

7)1’

are linearly independent. Let

m—1 t,

(3) ZZak(A D XD =0,  a,eC.

k=0 i=1

Apply (4 — Aol)y"" and use the property (A—A,0)"x\) =0, for i=1,

tm . lm .
Thus (4—A,1)™" {Z aioxfé)} =0. So Z ey |

i=1 i=1

By 3.3(2), Za’lox() €Y, NSpan {x(l) XY and s0 oy =--- =a, =0.
i=1
Apply (4 — AD)™? to 3.3(3) we show similarly that ¢, =---= a, 1=0 and so
on.
We put My = Span {(4-2,0)"xV, k=0, m-1
M, = Span {(4-2,1)" x?, k=0,...,m-1}

Span {(4—A ) x") k=0,...,m-1}.

=
I
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Since M; "M ; ={0} for i/, then the sum M) + Mz + ... + M, is direct. Now

consider the linear independent vectors x() =4~ ﬂol)x(’) i=1, .. tn
Claim that

1 2 "
“) Y2 Span x), X2y, o xly = {0},

Let Za W eY ,, a €C. Apply (4 — dol)™? to the left-hand side, we get

iXm=-1

(A- zOI)mZZa(A 2,DxD =0, So (4- /101)’"12& () —0, which

i=1
implies o =---=¢a, =0. So the equation 3.3(4) follows‘ Assume that
Y, ,+Span {x ;(1?1’ (t’")};tY Then there exist vectors

(t +1) (Lt
m—l N "9xm 1 "

and

)eY _, such that {x (l)_l l’”l s linearly independent

(5) Y +Span { (1) (tm+tm l)}

Xm—15+
Applying previous argument to 3.3(5) as with 3.3(2), we fine that the vectors
(A—=2y1 Y xh (A—ﬂol)kxf,iﬁf ) k=0,...,m—2 are linearly independent.

X1+

Now let M, = Span {(A- A5\ k=0,...m-2}

M, ., = Span {(A— A D) xn D ke =0,... . m-2}.

[

If Y, ,+Span{x () x )} Y, then t,.1=0.

ml’

At the next step put xV ) =(4-2,)x ., i=1,...,1

el +1t,_; and show similarly

m

mmm4m%mu“i=nw%+%ﬁ=wk

m—2»
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Assume that that Y, , mSpan{xf,Qz,i =L....t,+t, } #Y,_,, then there exist

vectors x,(,f)_z eY ,,i=t,+t, +1....t, +t, ,+t, such that
XD i=l o, v, are linearly independent and
@)

)/;,’173 + Spal’l {x’niz,l’ = 1,. . .,tm + t}’VI*l + tmiz} = )]’,’172.

We continue this process of construction of M, i = 1, ...p where
p:tm +tm_1 +...+t1.
The construction shows that each M; is Jordan subspace of 4 and M; + ... +

Mp is a direct sum. Also M +...+M, =R, (4)=C".

A
C‘l’l CI?

Figure. 2

3.4 Example. Let us consider the matrix

2 1.0 0 0
021 0 0
4=[0 0 2 0 0
00 0 2 1
00 0 0 2

lA-All=2-A)
A=2,2,2,2,2 are eigenvalues of 4.
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(01 0 0 0] (0 01 00 0 0 0 0
00100 00000 0000

A-2I=[0 0 0 0 0[,(4-2=0 0 0 0 O [(4=20*=|0 0 0 0
0000 1 00000 0000
0000 0 0000 0 0000

Y, = Ker(A-21)={Ae,+ Ae, | 4,4, are scalars}
Y, = Ker(A=21)" = {ne, + tye; + sy + piaes | i, pho, f1z, g are scalars}
Y, = Ker(A=21)’ = {6, + 11y, +115; +114€4 +71565 | 7,71, 75 +114 +75 are scalars}
K CY,c¥y=Ry(4)=C
e3 is a basis of Y3 modulo Y2 such that
Y> + span {e3} = Y3
Jordan subspace M| =Span{4— 2])2e3,(A —21)e;,e;} = Spanie;,e,,e;}
(A-21)ey=e, €Y,
Y, +Span{(4—-21)ey} # Y,
Jes € Y, such that {e, es} is linearly independent set.
Jordan subspace M>= Span {(A4 —21)es,es} = Spanie,,es}

M +M,=R,(4)=C’ =Y,

Y3
C3
S| €5
Y,
€ €4
Y

Figure. 3

S O O o O
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EIGENVALUES OF SOME COMPOSITE GRAPHS

Zaw Win! and Aung Kyaw?

Abstract

K, is a complete graph with n vertices. K™ is a graph containing

m copies of K, with each vertex of a K, is only adjacent to a vertex of each
of the other K,,.

We will show that the adjacency matrix of K" has
(1) (n —1)(m — 1) eigenvalues of —2
(i1) m — 1 eigenvalues of n—2
(iii)  n—1 eigenvalues of m —2

(iv)  aneigenvalue of n+m—2.

Composite Graph K™ and Its Adjacency Matrix

K, is a complete graph with n vertices. K" is a graph containing m copies of
K, with each vertex of a K, is only adjacent to a vertex of each of the other K.
(See figure 1 for K*)

Figure 1. K{¥

I Professor & Head (Retd.), Department of Mathematics, University of Yangon
2 Professor, Department of Mathematics, University of Yangon
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Basic definitions and notations on graphs and their eigenvalues can be found
in [1, 2, 3] and others.

The adjacency matrix of K™ is like as follow:

_Kn In In In
In Kn [n t ]n
In 1}1 Kn ]n
VA A A
_In In In In Kn_
For example, adjacency matrix of K* is
[0 1 1{1 0 0:1 0 0:1 0 O]
1 01:01 0:01 0:01 0
1 1 0:0 0 1:0 0 1.0 0 1
1 0001 1:1 001 00
01 0:1 01:01 0:010
00 1:1 1 0:00 1:0 01
1 00:1 000T1T1:1 00
0601001 0:1 01:010
001:00 1:1 1 00 01
1 00:1 0 0:1 0 0:i0 1 1
01 0:01 0:0 1 0:i1 0 1
00 1:0 0 1:0 0 1:1 1 0]
011 - 1] (K 1, I - 1]
101 -1 I, K I - ]
Since adjacency matrix |1 1 O --- 1|ofK,islikeas |/ [ K - I |,
1111 VA AR A
1111 0] Rt K |

K™ can be seen as a generalization of complete graphs.
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Eigenvalues and Eigenvectors of Adjacency Matrix of K"

The adjacency matrix of K" has
@) (n—1)(m — 1) eigenvalues of —2
(ii) m — 1 eigenvalues of n—2
(iii) n — 1 eigenvalues of m —2
(iv) an eigenvalue of n+m —2.

By using each of the eigenvectors shown in figure 2, one can check that
there are (n — 1)(m — 1) eigenvalues of —2.
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Figure 2. (n — 1)(m — 1) eigenvectors of eigenvalue —2




J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 111

-1 [=1 -1
0
1) [-1]  [-1] I N
~1] | -1 -1 0 1
-1] | -1 -1 0 1
o] |o !
1o -1 - - :
110

0 011 1
S ool o |
011 : !
0|1 0 : !

-+ S -
0|0 1 0 !
0||o 1 1 !

: , 0 :

o] lo] [1] : 1]

0 0

L™ _0— LA
(a) (b) )

Figure 3. (a) m — 1 eigenvectors of eigenvalue n — 2;

(b) n— 1 eigenvectors of eigenvalue m — 2; (¢) an eigenvector of eigenvalue
n+m-—2.

According to eigenvectors shown in figure 3, there are m—1 eigenvalues
of n—2,n—1 eigenvalues of m —2 and an eigenvalue of n+ m —2.
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USING GRAPH DATABASE FOR EFFECTIVE
VISUALIZATION IN LEARNING BASIC BUDDHIST
VOCABULARY"

Ohnmar Win'
Abstract

Graph databases have a long academic tradition. At the heart of
any graph database lies an efficient representation of entities and
relationships between them. All graph database models have, as their formal
foundation, variations on the basic mathematical definition of a graph, for
example, directed or undirected graphs, labeled or unlabeled edges and
nodes, hypergraphs, and hypernodes. More recently, semantic relations
have become a major theme of interest of Computational Linguistics.
Semantic relations among words have captured the interest of various
brands of philosophers, cognitive psychologists, linguists, early childhood
and second language educators, computer scientists, literary theorists,
cognitive neuroscientists, psychoanalysts - investigators from just about any
field whose interests involve words, meaning or the mind. The Pali Canon is
the complete scripture collection of the Theravada school. Buddhist monks
and scholars studied the Pali language mainly to gain access to the Buddhist
Canon and many religious works were written using the Pali language. The
objective of this study is to support for new Buddhist vocabulary learner to
alternative view by using graph database, Neo4;j.

Keywords: graph database, semantic relations, Neo4j, Pali, Buddhist
Vocabulary

Introduction

Semantics is the study of the relationship between the linguistics forms
and entities in the world, that is, how words literally connect to things
(meaning). It is a major branch of linguistics devoted to the study of meaning
in language. In many research fields such as linguistics, cognitive science,
psychology, artificial intelligence, biomedicine and information retrieval,
computing semantic similarity/relatedness between concepts or words is
considered as an important issue. More recently, semantic relations have
become a major theme of interest of Computational Linguistics, as they
present a convenient and natural way to organize huge amounts of lexical data
in ontologies, Word Nets and other machine-readable lexical resources.

I Lecturer, Department of Computer Studies, Yadanabon University
*- Best Paper Award Winning Paper in Computer Studies (2017)
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Semantic relations may reflect relations in language including relations
between objects and their symbols. Semantic relations can refer to relations
between concepts in the mind (called conceptual relations), or relations
between words (lexical relations) or text segments. Different domains develop
continuously new kinds of semantic relations. Some kind of semantic
relationships that exist in words of natural language have always been a
challenge in the Fields of Natural Language Processing (NLP) and
Information Retrieval (IR). When a word level semantic relation requires
exploration, there are many potential types of relations that can be considered:
synonym, antonym, homonym, polysemy, hyponym, meronym, etc. Semantic
relations are fixed manually in various linguistic resources, such as thesauri,
ontologies, and synonym dictionaries.

The relationships between words can be summarized briefly as follows:

Synonym :  The notion that more than one linguistic form can be said to
have the same conceptual or propositional meaning.

e.g., Nibbana and Mokkha
Antonym : The notion of semantic oppositeness.
e.g., Amitta and mitta

Hyponym : Refers to a relationship existing between specific and general
lexical items: the meaning of the specific item is included in,
and by, the meaning of the more general item.

e.g., sunakha is a hyponym of tiricchana.
Meronym :  Refers to a part-whole relation.
e.g., Rukkha and Phala

The limitations of traditional databases, in particular the relational
model, to cover the requirements of current application domains, has lead the
development of new technologies called Graph Databases, which are oriented
to store graph-like data. Recently the area is gaining attention because in
trendy projects where a database is needed (for example chemistry, biology,
Web Mining and semantic Web), the importance of the information relies on
the relations more or equal than on the entities. Moreover, the continued
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emergence and increase of massive and complex graph-like data makes a
graph database a crucial requirement. This renascence is showed by the
availability of several graph databases systems.

With the needs to manage large and sparse datasets, with many kinds
of relationships between them, new kinds of Database have been developed to
supply it with a performance and capability better than the traditional
databases technologies and queries languages. Many of these new kinds of
Databases using graph structures like the main engine to allow to user to
insert, update, query, delete and apply analysis techniques based in graphs in
the networks of graphs.

Graph Database is a database system where the associations between
objects or entities are similarly as important as the objects themselves. In a
graph database, data are represented by nodes, edges and properties. Nodes
are represented as objects and edges manifest the relationship between nodes.
There are several implementations of graphical database. Both nodes and
edges can have properties that illustrate their particular characteristics.

Graph databases are especially suited for highly connected data.
Today, general-purpose graph databases are a reality, allowing mainstream
users to experience the benefits of connected data without having to invest in
building their own graph infrastructure. Today, there are many graph
databases such as Allegro Graph, DEX/Sparkee, Hypergraph DB, Infinite
Graph, Neo4J, Orient DB, Info Grid, Vertex DB, Flock DB, Graph DB etc.

An Overview of Neo4j Graph Database

Neo4j is the world's leading graph database. Neo4j is a high
performance graph store with all the features expected of a mature and robust
database, like a friendly query language and ACID transactions.

Neo4j is a graph database, which means that it does not use tables and
rows to represent data logically; instead, it uses nodes and relationships. Both
nodes and relationships can have a number of properties. While relationships
must have one direction and one type, nodes can have a number of labels. The
programmer works with a flexible network structure of nodes and
relationships rather than static tables. For many applications, Neo4j offers
orders of magnitude performance benefits compared to relational databases.
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Neo4j is based on a network oriented model where relations are first class
objects.

The most popular variant of graph model is the property graph.
Property graphs are attributed, labeled, directed multi-graphs. The property
graph balances simplicity and expressiveness. Property graphs sacrifice some
graph purity for pragmatism by grouping properties into nodes, thereby
making them easier to work with. The main abstractions in a property graph
are nodes, relationships and properties. Neo4j uses Cypher Query Languages
for property graphs. A Property graph has the following characteristics:

e [t contains nodes and relationships

e Nodes contain properties

e Relationships are named, directed and always have a start and
end node

e Relationships can also contain properties

Most people find the property graph model intuitive and easy to understand.

Neo4j has many features. The main feature is that neo4j not depend
heavily on index because it supplies a natural adjacency by the graph. It is
easy to write queries about relationships with many types of deep.

The Cypher Query Language in Neo4j

Cypher is a declarative graph query language that allows for
expressive and efficient querying and updating of the graph store. Cypher is
designed to be a humane query language, suitable for both developers and
operations professionals who want to make ad hoc queries on the database.
Cypher is a database expressive and compact query language. It is primarily
used in Neo4j, although it can also be used to programmatically describe
graphs in a precise manner due to its close affinity to graphs. It is easy to learn
and understand since it follows the way humans intuitively describe graphs
using diagrams. Cypher is a relatively simple but still very powerful language.
Very complicated database queries can easily be expressed through Cypher.
Like most query languages, Cypher is composed of clauses. A reasonably
simple query is made up of START, MATCH and RETURN clauses.

The some clauses of Cypher are:
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e START — specifies one or more starting points — nodes or relationships — in a
graph, which are obtained via index lookup (starting points are rarely
accessed via IDs).

e MATCH - it makes use of the relationships

e RETURN - returns nodes and relationships that match the criteria

e WHERE - acts as a filter pattern for matching results

e CREATE or CREATE UNIQUE - creates (unique) nodes and relationships

e DELETE —removes nodes, relationships or properties

o SET — sets property values

e UNION — merges results from two or more queries

e  WITH - chains subsequent query results and pipelines results

The Operations of Neo4j Graph Database

Neo4j has CRUD operations. They are Create, Read, Update, and Delete.
CREATE Operation

Create operation is used to create nodes and relationships.

e.g., Creating a node

create(a:TheBuddha{name: 'Buddha', meaning: 'Supreme Man',
PoS: 'Noun', Reference: 'Pali Canon'})

Create clauses can create nodes and relationships. () parenthesis is to indicate
a node. In a:TheBuddha, 'a' is variable andThe Buddhais label for the new
node. {} bracket can be used to add properties to the node.
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Result in console:

Eile Edit View History Bookmarkel Taols  Hielp TN 2. 8 ]
® Neotj-@locahostazs x| MR — v — -
G ost: 747: wser/

c o

o @ | | QA Search In @ =

Database Information

Node labels

TheBuddha(1)

Property keys

aaaaaa

TheBuddha  Color Size: Caption

,  39PM ||
> a7002017

-Creating multiple nodes

create (p:The Enlightened One {name: "Buddha", meaning: "Supreme
Man", Pg@S:"Noun", Reference: "PaliCanon"}), (b:The Enlightened
One{name}" Dasabala"”, meaning:"Ten powers of Buddha", PoS: "Noun",
Reference¢: "Pali Canon"}), (c:The EnlightenedOne {name:"Sattha",

meaning: A Supreme teacher", PoS:"Noun", Reference:
"PajikakandaPali"}), etc.,

In the following table, there are some of the epithets of the Buddha and
its properties.
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Table 1. The epithets of the Buddha and its properties.

119

Name Meaning PoS Reference
Dasabala Ten powers of Buddha Noun|Pali Canon
Sattha A Supreme teacher Noun | ParajikakandaPali
Sabbaiifiii All-Knowing Noun gdtj;i?il;;r_?gésa%h
Dvipaduttama | The best of Men Noun | Buddhavamsa
Muninda The chief of monks Noun | ApadanaPali
Bhagava The Blessed One Noun | ParajikakandaAtthakatha
Natha Protector Noun | three pitakas
Cakkhuma Having eyes Noun | Pali Canon
Muni Monk Noun | Pali Canon
Lokanatha TheRefuge of the human beings | Noun | Suttapitaka
Anadhivara There is no one who is superior Noun | Buddhavrsa
to oneself
Mabhesi The Great Sage Noun | Pali Canon
- One who admonishes the living . .
Vinayaka . Noun | Sutta and VinayaPitakas
beings
Samantacakkhu | All-Seeing Noun | Pali Canon
Sugata Meritorious act Noun | Five Nikayas
Bhiripafifia abundant knowledge as the earth | Noun | Majjhimapannasa
Maraji Supreme Man Noun | Pali Canon
Narastha The Noble Man Noun | TheragathaPali
Naravara The Noble Man Noun | TheragathaPali
Dhammaraja The King of righteousness Noun | Theragatha
Mahamuni The Great Sage Noun | Suttaand VinayaPitakas
Devadeva The God of gods Noun ;{2:?;; ;ggfimd
The One who is a teacher
Lokagaru deserving the special veneration| Noun|SakulathertApadana

of human beings




120 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

Result with graph view for creation of multiple nodes;

-Creation of relationships

These are coding for relationships which are created after the creation of
nodes' codes under the following:

create
(a)-[:syponym_of]->(b), (a)-[:synonym_of]->(c),(a)-[:synonym of]->(d),
(a)-[:syponym_of]->(e),(a)-[:synonym_of]->(f),(a)-[:synonym_of]->(g)

In Relationships, Cypher uses a pair of dashes (--) to represent undirected
relationship. Directed relationships have an arrow head at one end
(eg.,<-- , -=> ). Bracketed expression may include types of relationships,
properties, and attributes.

Result with graph view for creation of relationships between nodes;

Database Information
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Read Operation

Reading a node named ‘Dasabala’ and return the PoS.

e.g MATCH (n[:TheEnlightenedOne) WHERE n.name =‘Dasabala’ RETURN
g,

n.Pos

Result in console:

Fie Edit View History Bookmarks Took ﬂe\ﬁ- LT T — w oo
® Neodj - @localhost:7474 X — - — - e— — —
c @ ® localhost:7474/browser/ e @ || Q Search n @

Database Information

Node labels

Relationship types

No
Property keys

Retumed 1 record in 57 ms.

Update Operation

-Updating a node named ‘Dasabala’ with 'Jina':

€.2., MATCH (n|{name: ‘Dasabala'}) SET n.title = “Jina' RETURN n

Result in console:
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Delete Operation

- Deletinga node named with "Dvipaduttama"and all its relationships

e.g., MATCH (n { name: ‘Dvipaduttama' }) DETACH DELETE n

Result in console:

Fle Edit View History Bookmarks Tools Help . ol o

e ||Q searn wWE O ¥ Ah 4

Database Information

Node labels MATCH (n { neme: "Dvipaduttama”}) DETACH DELETE n

Property keys

Advance Feature of Neo4j

Cypher query language can use LOAD CSV to import data from CSV

(Comma Separated Value) fileto get the data into query. The data can be

loaded from standard CSV with LOAD CSV function. Firstly, the Buddhist

vocabulary from the Pali Canon was created with CSV format. From this the
raw CSV data turn into a graph database which shows the nodes and the
relationships between them but keeps the other details such as the meanings,
PoS, and references as properties within the database. The following figure
contained some words of Tipitaka and stored with CSV file format.
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Tacwt | Facebuisnt 0 Eores ti e s i Biayaions N b ue Tetl zseet @ - = x
[F=1 & cut cationt B | == |=weeres General = By (| e | Autesims ? # |
) s cony = = i . & e
paste B L U -|E oA emescert-| o 8 9 Conoitional Formst Cell | mnsert Delete Format | - Sorta Find &

2t Foinvet Pabiter B[ la] | Edmeras {ESmaletonian B0 | (Coadtionol Eoper~ S| PstRbemeRamat 1155 e et s Eaa
Ciipboard 5 Font & Agnment & Number 5 Stytes ceits Eaiting
071 -Q £
= 1 5 e Beeas ¢ [ = [ o [ w [ -+ [ 5 T x [+ [ w [~ [ o [ » [ o [ &% [ 5 ]

1

> sumsRe lraga Sutta: The Rhikkhis who discards all human passions (anger, hatred,craving, ete.) and is frae from delusion and fear, is compared ta 2 snake which has shed ir< skin

2 sussss  Dhaniya sutta: The complacent “sccurity” of a worldling iz contrasted with the genuine security of the Buddha.

4 sUBSES  KhaggavisinaSulle:  The wandering life of a Bhukkiiu is praised. Farnily and social tes are Lo be avoided in view of theit samsaric atlschments, excepling the “good fiend” (kalyauamiia).

5 SUBS86 Kasibharadvaja Sutta:  Socially useful or mundane labour is contrasted with the no less important efforts of the Buddha striving for Nibbana.

6 SUB586 Cunda Sutta: The Buddha enumerates four kinds of samanas: A Buddha, an Arahant, a Bhikkhu, a fraudu il .

7 SURSRS  Parahhava Sutta: The “canses of personal dawnfall” in the moral and spiritual domains are enumerated

o SUDSBs  Vasala or Aggiks Dharad:In refutation of the charge “outcsst,” the Duddhs explains that it s by actions, not lineage, that one becomes an outcast or a brahmin.

5 suBsss  meta surta: The constituents of the practice of loving-kindness towards all beings.

10 SUBS86  Hemavata Sutta: Two yakkhas have their doubts about the qualities of the Buddha resolved by him. The Buddha continues by describing the path of deliverance from death.

11 SUB586 Alavaka Sutta: The Buddha answers the questions of the yakkha Alavaka concerning happiness, understanding, and the path to Nibbana.

12 suBsss  vijaya sutta: An analysis of tha body intoits (impura) constitusnt parts, and the mention of the Bhikkhu who attains Nibbina through understanding the body’s true natura.

13 5UBSEG  Muni Sutta: The ideal

c conception of a muni or sage who leads a solitary life freed from the passions.

14 sUBoE/ |Katanasuta A hymn tothe 1hree Jewels: Buddha, Dhamma and Sangha

15 suBs87  Amagandha Sutta: Kassapa Buddha refutes the Brahmanic view of defilement through eating meat and states that this can only come about through an evil mind and corresponding actions.
16 5UBSS7 | Hiri Sutta: A dissertation on the nature of true friendship.

175UBS87 Mahdmangala Sutta:  Thirty-eight blessings are enumerated in leading a pure life,starting with = ionsand el inthe realisation of Nibbana.

18 sUBSE7  Sduiluma Sull: I reply 1o the Ui eatening allitude of Lie yekkha Sauloms, the Buddha stales Ual passion, halied, doubl, ec., ariginate with the body, desite and the wneept of sell.
Dhammacariya Sutta: A Bhikkhu should lead a just and pure lite and avoid those of a quarrelsome nature and those who are slaves of desire.
Brahmanadhammika Sut The Buddha explains ta some old and wealthy brahmins the high moral standards of their ancestors and how they declined, following greed for the king’s wealth. As a result they i

Nava Sufta: Taking heed of the quality of the teacher, ane should go ta a learned and intelligent man in arder to acquire a tharough knowledge of Rhamma
Kimsila Sutta: The path of a conscientious lay disciple, Dhamma being onc’s firstand last concern.

Utthana sutta: An attack on Idieness and laziness. Plerced by the arrow of suffering, one should not rest until all desire Is eliminated.

Rahula Sutta: The Buddha advises his son, the novice Rahula, to respect the wise man, associate with him, and live up ta the principles of a recluse.

Vangisa Sutt:

The Buddha assures Vangisa that his late teacher, Nigrodhakappa, attained Nibbana.
| Suba ¥

Loading the data

The LOAD CSV statement can be used to load the data in from a CSV
file as the following:

LOAD CSV|WITH HEADERS FROM

C:\Users)\Dell\Desktop\GraphDbThesis\GraphDbThesis\Relation.csv As
line

Result in console:

’ Connect Graph Db I Clean Graph Db http://IocalhostT474/browser/ % Refresh .- View All ~ View Synonym
Creste 2 nods | Create Relation | Load CSV il [ Search

File  C:\Users Dell Desktop: GraphDbThesis\ GeaphDbThesis' Relation.csv [Browse | [Lmport Node | | Import Ralation

Match (n:PWord) Return n

» D CIZED

11:04 AM
11/01/2017
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Classification of Pali Canon

The Pali Canon is the complete scripture collection of the Theravada
school. As such, it is the only set of scriptures preserved in the language of its
composition. It is called the Tipitaka or "Three Baskets" because it includes
the Vinaya Pitaka or "Basket of Discipline," the Sutta Pitaka or "Basket of
Discourses," and the Abhidhamma Pitaka or "Basket of Higher Teachings".

TIPITAKA
I | |

Vinaya-pitaka Sutta-pitaka Abhidhamma-pitaka
(5 books) (5 collections) (7 books)

Dhamma-sangant

Sutta-vibanga Khandhaka Parivara Vibhanga
| ' 1 Dhatu-katha
Mahavagg Cilavagga Puggala-paffiatti

Katha-vatthu
Yamaka
Patthana

Maha-vibhanga  Bhikkhuni-vibhanga

| | | | |
Digha-nikdya Majjhima-nikaya Sarhyutta-nikaya Anguttara-nikaya Khuddaka-nikaya
(15 books)

Khuddhaka- Dhammapada Udana Itivuttaka SuttanipataVimana-vatthu Peta-vutthu Thera-gatha

patila ) 3 ® (5) (6) ™ ®)
M | | | | | |
Thert-gatha  Jataka Niddesa Patisarhbhida Apadana Buddhavarisa Cariya-pitaka
) (1) (11) (12) (13) (14) (13)

Figure 1. Classification of PaliCanon

Implementation for Semantic Relationship of Buddhist Vocabulary with
Neodj

Firstly, words are extracted from the Pali Canon and various Buddhist
literatures written by Pali. The relationship implementation was focused on
Pali word definitions and semantic relationship in the dictionaries, where the
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meaning of a word is explained by other words in its gloss.The Pali words and
their activities are built in the spread sheet and stored with CSV file
format.The graph database extracts the words that match a user-query and sets
relationships between words by using Load CSV. The user can search the
desired words via graphical user interface which provides to find the words
with semantic meaning. The system will display the result all of the words and
its relationships with graph view. The process flow of the words and the
semantic relationship of Pali words implemented by Neo4j graph databasewas
provided in figure 2.

The Pali | Pali Words ~_ -
Canon O
— Create Graph Database
Lexicons and Relationship / l
Literature survey > Building Search GUI
carc —p
T SEAN
{7’\’ _ User
\\( / ~
Expert

Rofresh . View Al - View Rolalion

Create Relation.

Figure (3) Relationship for Tipitaka Figure (4) User Interface for Tipitaka
Nodes and its Relationships
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Conclusion and Future Work

In this work, a storage technique for Pali Dictionary especially
hyponym and meronym relationships was implemented based on graph
database. Graph databases are a major pillar of the No SQL movement with
lots of emerging products, such as Neo4j. Main contribute of this work is to
support with Pali words learner with understandable format. Yet, this is only
the beginning. The automatic extraction of semantic relations of Pali words
form various resources will be future work. The evaluation and comparison
with other graph databases and relational database were the future work. And
also plan on migrating several researches done on relationship mining to work
on graph database back-ends.
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COMPARATIVE ANALYSIS OF RELATIONAL AND
OBJECT ORIENTED APPROACHES FOR GIS DATABASE

Yi Mon Win"

Abstract

Objects can be many things varying from an actual feature which
can be extracted from a scene to more abstract entities which are associated
with those features. There are a variety of database structures which can be
used to store data about spatial features. These include RDBMS (Relational
Database Management Systems), OODBMS (Object Oriented Database
Management Systems) and ORDBMS (Object Relational Database
Management Systems). All of these have retrieval systems based on SQL
(Structured Query Language) and OQL (Object Query Language). The aim
of this research is to compare the storage structure, retrieving data of
RDBMS, ORDBMS and OODBMS storing the GIS (Geographic
Information System) data of some Yangon Region’s townships. This
research presents a study that investigates the current scope deployment of
an effective and efficient geographical information system (GIS) based
approach to the representation, organization and access of these databases
by Yangon Region information.

Keywords: spatial analysis, RDBMS, OODBMS, ORDBMS, SQL, GIS

Introduction

RDBMS (Relational Database Management System) and OODBMS
(Object Oriented Database Management System) are both DBMSs (Database
Management Systems) they differ in the model and use to represent data.
OODBMSs use object-oriented model while the RDBMSs use the relational
model. Both of them have their own advantages and drawbacks. OODBMS
can store/ access complex data more efficiently than RDBMS. But learning
OODBMS can be complex due to the object-oriented technology, compared to
learning RDBMS. Therefore, choosing one over the other is dependent on the
type and complexity of data that needs to be stored/ managed.

An Object-Oriented Database Management System (OODBMS),
sometimes referred as Object Database Management System (ODMS) is a

" Dr, Associate Professor and Head of Department, Department of Computer Studies,
Dagon University
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Database Management System (DBMS) that supports modeling and creation
of data as objects. OODBMS provides support for object classes, class
property and method inheritance by sub classes and their objects. A Relational
Database Management System is also a DBMS but, that is based on the
relational model. Most popular DBMSs currently in use are RDMSs.

Databases are traditionally used in business and administrative applications.
In this research, it is discussed how these new relational databases and object
oriented database can be used to solve the problems posed by spatial data
management and compare database design methodologies for developing efficient
schema with a spatial dimension using the GIS data as a basis. GIS considers spatial
objects which can be defined in space as points, lines or areas. GIS can serve users
well in its areas.

Relational Data Model for GIS data of Yangon Region

In the relational data model, information is organized in relations (two-
dimensional tables). Each relation contains a set of tuples (records). Each tuple
contain a number of fields. A field may contain a simple value (fixed or variable size)
from some domain (e.g. integer, real, text, etc.). All of this is accomplished in the
Relational DBMS through well defined terms like relation, tuple, domain, and
database in Figure (1).

Township Table
Township
ID Township Name | Township Map Url
1 | Ahlone C:\Yangon Ward Area\Ahlone.shp
2 | Bahan C:\Yangon Ward Area\Bahan.shp
Township Ward Coordinate Table
TownshipDetaillD | XCoordinate Ycoordinate
1 194380.172 1857102.75
2 193364.219 1857881.75
Township Detail Table
g’::;i?g) Township Population Density Area (Acre)
1 | Ahlone 55482 83.42 665.10
2 | Bahan 96732 53.62 1804.00

Figure 1. Example of a Relational Data Model
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ORDB (Object Relational Database) Enhanced Table Structures

An OR database consists of group of tables made up of rows. All rows
in a table are structurally identical in that they all consist of a fixed number of
values of specific data types stored in columns that are named as part of the
table’s definition. The most important distinction between relational tables
and object-relational database tables is the way that ORDBMS columns are
not limited to a standardized set of data types. Figure (2) illustrates what an
object-relational table looks like.

The first thing to note about this table is the way in which its column
headings consist of both a name and a data type. Second, note how several
columns have internal structure. In a SQL Server DBMS, such structure
would be broken up into several separate columns, and operations over a data
value such as Township Name would need to list other component column in
figure(3). Third, this table contains several instances of unconventional data
types. X, Y Coordinate is a geographic point, which is a latitude/longitude
pair that describes a position on the globe, which is a kind of Binary Large
Object (BLOB) in Table (1).

Township Table

Township ID Township Name Township Map Url
1 Ahlone C:\Yangon Ward Area\Ahlone.shp
2 Bahan C:\Yangon Ward Area\Bahan.shp

Township Detail Table

Township | Township . . . Area

Detail ID D Township | Population| Density (Acre)
1 1 Ahlone 55482 83.42 665.10
2 1 Bahan 96732 53.62 1804.00
12 2 Kyimyindine | 111514 78.38 1422.79
13 2 Mayangon 198113 31.65 6260.48

Figure 2. Inheritance in an Object-Relational Database
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Township Detai 1ID

X Coordinate

Y coordinate

1 194380.172 1857102.75
2 193364.219 1857881.75
Township T hi Populati Densi A A T?wn
Detail ID ownship opulation | Density | Area(Acre) | shipID
1 Ahlone 55482 83.42 665.10 1
2 Bahan 96732 53.62 1804.00 1

E——

Township ID Township Name

Township Map Url

1 Ahlone

C:\Yangon Ward Area\Ahlone.shp

2 Bahan

C:\Yangon Ward Area\Bahan.shp

Figure 3. Object Relational Data Model

Table 1. Structure and Data for Object-Relational Table

Township ID::Township ID | Township Name:: Ward Coordinate::X,Y

1::1 Ahlone ::Thittaw

194380.172, 1857102.75

2::2 Bahan::NgarHtatGyi(West) |193364.219, 1857881.75

Object-Oriented Data Model for GIS Data of Yangon Region

In the object-oriented data model, information is organized in graphs
of objects, where each object has a number of attributes. Attributes can be
simple values, complex values (part objects), references to other objects, or
methods. Objects are instances of classes, and classes are (possibly) related to

each by means of inheritance.

The inheritance mechanism supports

generalization and specialization and offers many aspects of structured reuse
of models. Inheritance also offers the mechanism for qualified polymorphism,
since the resulting type system can allow for objects to be recognized as
belonging to several different types, namely the types of all the classes in the
inheritance hierarchy which lies on the path from the instantiating class to the

root of the hierarchy.
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Township Table
Township ID| Township Name | Township Map Url
1 | Ahlone C:\Yangon Ward Area\Ahlone.shp
2 | Bahan C:\Yangon Ward Area\Bahan.shp
—t
Township Detail Table ¢
Township Township Population Densi Area Town
DetaillD Ward (Person) ty (Acre) |[ship ID
1| Ahlone 55482 83.42 665.10 1
2| Bahan 96732 53.62 | 1804.00 1
13] Kyimyindine 111514 78.38 | 1422.79 2
Township Coordinate Table
Township Detail ID | X Coordinate Y coordinate
1 194380.172 1857102.75
2 193364.219 1857881.75

Figure 4. Example of Object Oriented Table Structure for Yangon Region
GIS Data

A method of an object is a specification (code) of functionality,
typically manipulations of the other attributes in the same object, but may also
invoke methods, associated with other objects, and thus change the state of
these other objects. An important aspect of object-oriented data models is the
notion of object identity: Objects has an identity (often called OID) which is
totally independent of the state of the object Figure (4). That is, user can have
two objects with exactly the same state (same values in all attributes), but they
will still in the object system be treated as two distinct objects, with separate
identities. Object modeling describes systems as built out of objects:
programming abstractions that have identity, behavior, and state. Objects are
an abstraction beyond abstract data types (ADTs), where data and variables
are merged into a single unifying concept. As such object modeling includes
many other concepts: abstraction, similarity, encapsulation, inheritance,
modularity, and so on.



134 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

Experimental Results for Comparison of Databases

Experimental results are based on compare the relational, object-
relational and object oriented databases by using GIS data of Yangon Region
townships. Its results of comparison are comparing query processing time of
these databases. Furthermore map query system compares the land use of
Yangon Region. This result can apply for city planning for Yangon Region.
Table (2) shows the result of query processing time and area (acre) for RDB
and OODB by Yangon Region Townships.

The Comparison of Relational and Object Oriented Database by
Townships

According to Table (2), the Figure (5) presents the query processing
time of relational database and object oriented database on townships of
Yangon Region. The

Table 2. Comparison of Query Processing Time (QPT) for RDB and OODB
by Yangon Region Townships

No Township Name . I.{DB .O.ODB Area No of

(Milliseconds) | (Milliseconds) | (Acre) |Records

1 | Ahlone 425 214 | 665.60 10
2 | Bahan 91 76 | 1804.00 22
3 | Botathaung 90 64 | 588.80 10
4 | Dagon 44 47 | 2880.00 4
5 | Dagon Myothit (East) 60 58 | 6235.00 53
6 | Dagon Myothit (North) 50 47 4568 27
7 | Dagon Myothit Seikkan 55 45 | 4985.78 34
8 | Dagon Myothit (South) 51 31| 5096.00 36
9 | Dala 57 28 | 2138.8 23
10 | Dawbon 46 37| 910.98 14
11 | Hlaing Thar Yar 49 31| 5699.00 28
12 | Hlaing 46 29 3368 15
13 | Insein 45 38 | 4356.23 20
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No Township Name . I.{DB .O.ODB Area No of
(Milliseconds) | (Milliseconds) | (Acre) |Records
14 | Kamaryut 48 34| 1363.2 9
15 | Kyauktada 44 31 176 8
16 | Kyeemyindine lower 45 40 | 654.23 10
17 | Kyeemyindine Upper 45 40 | 768.56 11
18 | Lanmadaw 48 32 248.9 11
19 | Lathar 49 30 | 200.96 9
20 | Mayangone 43 29 | 6260.48 9
21 | Mingalar Taungnyut 47 34 377 19
22 | Mingalardon 48 39 | 9875.65 33
23 | North Okkalarpa 48 39 | 4983.35 18
24 | Panbedan 44 30 | 187.53 12
25 | Pazundaung 46 31 | 1056.85 9
26 | Sanchaung 44 43 | 895.65 17
27 | Seikkyi Kanaungto 46 36 | 1508.84 7
28 | Shwepyithar 44 32 | 4465.32 16
29 | South Okkalarpa 49 30 | 1900.58 13
30 | Tarmwe 44 39 1184 20
31 | Thakada 54 40 | 3215.47 18
32 | Thingangyun 52 34 | 2841.74 38
33 | Yankin 44 41 | 1242.89 15

system retrieves townships’ attributes table from
and townships’ map from object oriented database. The Figure (5) shows the
comparison of the processing time of relational database and object oriented
database. According to the result of this figure, Ahlone has more processing
time than other townships because Ahlone is the first query of all townships.
The Figure (6) shows the area of townships in Yangon Region. Mingalardon
is the largest township and its processing time is 48 milliseconds for relational
database and 39 milliseconds for object oriented database. Kyauktada
Township is the smallest township in Yangon Region. Its query processing

relational database
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time is 44 milliseconds for relational database and 31 milliseconds for object
oriented database.

Comparison of RDB and OODB in Yangon Region Township
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Figure 5. Comparison of Query Processing Time (QPT) for RDB and OODB
by Yangon Region Townships Area
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Table 3. Query Processing Time (QPT) for Comparison of ORDB and OODB
by Mingalardon Township Regions

No Region ORDB OODB Area No of
(milliseconds) |(milliseconds)] Meters | Records
1|Airport Area 54 91.01] 1032525.50 1
2| Antenna_mast Symbol 69 92 1960.63 1
3|Benchmark Symbol 84 153.01 2009.67 1
4|Builtup Area 91.01 177.01|32619048.00 30
5|/Bush _or scrub Area 96.01 165.65| 940709.60 6
6|Canal(Single).shp 90.01 147.01 283.87 2
7|Cemetery Area 106.01 155.01] 350559.78 9
8| Cultivation Area 86 179.01/33381432.01 46
9|Dense forest Area 87.01 159.01| 2778427.75 3
10|Embankment for road 83 158.01 35590.91 1
11|Factory Symbol 53 153.01 3802.18 1
12|Golf course Area 82 176.01| 2216476.75 1
13|Grass Area 61 162.01| 5144866.50 13
14|Hotel Symbol 63 162.01 12271.44 1
15|House Building 90.01 154.01] 443423.60 710
16|Intermediate contour 73 151.01] 4028148.75 63
17|Marsh _or swamp Area 110.01 149.01| 1239681.38 24
18|Monastery Symbol 78 159.01 43115.71 26
19|Monument Symbol 81 161.01 14076.13 7
20{Mosque Symbol 87.01 157.01 1956.97 1
21|Open_or barren land Area 89.01 153.01]17144768.00 46
22|Orchard plantation Area 115.01 159.01 42347.00 1
23|Pagoda or stupa Symbol 101.01 148.01] 140256.84 38
24|Park Area 85 157.01] 161752.13 2
25|Plantation Area 82 147.01] 1061072.88 5
26/Police_station 89.01 153.01 352.98 2
27|Post office 86 157.01 178.82 1
28|Public_building 110.01 167.01] 1023528.94 677
29|Railway _station 101.01 151.01 15020.04 2
30[Relative height Point 131.01 171.01 809.71 5
31|River Area 78 153.01 460.47 10
32|Scattered trees Area 78 177.01|111575209.00 1
33|School Area 86 164.01 44105.99 6
34|Sparse forest Area 90.01 153.01] 9052389.00 22
35|Sport_field Area 86 148.01 62010.20 59
36|Supplementary contour 113.01 172.01/15449770.11 5
38| Triangulationstat Symbol 85 166.01| 1352580.88 7
39| Vegitation boundary 91.01 159.01] 1352580.88 7
40|Cemetery Area 90.01 151.01 8423.03 1
41|Lake or pond 75 156.01| 3535622.50 206
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Comparison of Object Relational and Object Oriented Database by
Townships

According to Table (3), the Figure (7) shows the query processing time
of the maps of Mingalardon township’s regions from both databases.
Mingalardon is the largest township and has multiple regions in Yangon
Region among 33 townships. The Figure (8) shows the regions of
Mingalardon Township. Cultivation region is the largest region and its area is
33381432.01 square meters. The Figure (7) shows query processing time
where object relation database is 86 milliseconds and object oriented database
is 179 milliseconds. The smallest region is the post office region (178.82
square meters) and its query processing time of object relational database is 81
milliseconds and object oriented database is 157.01milliseconds.

Comparison of ORDB and 00DB by Mingalardon Township's Areas
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Figure 7. Comparison of QPT for ORDB and OODB by Mingalardon
Township’s Regions
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Conclusion

This research is comparing relational database, object relational
database and object oriented database for GIS data of 33 townships in Yangon
Region by using map query system. This map query system has been
implemented by using Microsoft C#.Net 2010, MapWin GIS, MS SQL server
2010 for object relational database, db4o database for object oriented database
on Intel® Dual Core CPU P6100 @ 2.00 GB main memory and Microsoft
Window7 Ultimate. The experimental results are taken out from these
computer specifications. It can vary depending on the enhancement of
computer specifications. According to the result and discussion, it is generally
concluded that the effective use of structured query language (SQL) on sql
server 2010 for ORDB and query by example method on db4o database for
OODRB. It analyses the performance of the different query languages and same
sizes of different databases.

This system is compared to the query processing time performance of
RDB, ORDB and OODB. It is noticed that the experimental results in the
figure and tables are counted from the outcome of the first time running on the
query processing. All results are taken from the results of the first time query
processing not from the result of the next times because same query
processing are faster than the first time. This is because the database optimizer
optimizes execution by using least recently use (LRU) algorithm for frequents
the same query.

As a result of comparison of relational and object oriented database,
the system retrieves the township attribute data tables from relational database
that is more processing time than OODB and retrieves GIS township map
from object oriented database that is less processing time than RDB because
the traditional RDBMSs are not suitable for applications with complex data
structures or new data types for large, unstructured objects, such as CAD/
CAM, Geographic information systems, multimedia databases, imaging and
graphics.

According to comparison of object relation and object oriented
database by townships, the Mingalardon township and Kyauktada township
are compared by object relational and object oriented database. In the result of
this comparion, Mingalardon is the biggest township and Kyauktada township
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is the smallest township of Yangon Region. Mingalardon township owns 41
regions and Kyauktada owns 13 regions. Query processing time of ORDB is
faster than OODB because of ORDB employs object-oriented concepts and
capabilities on top of a conventional relational database management system
(RDBMS). ORDBMSs are extensions of RDBMSs. The ORDBMS standard
SQL: 1999 is a superset of the purely relational SQL-92 standard. Hence, all
relational features are still available in ORDBMSs.

According to comparison of object relational and object oriented
database by each region of townships, query processing time of object
oriented database has more processing time than object relational database.
First compared region is built up region; every townships of Yangon Region
has built up region. Mingalardon has the largest built up area and Lathar owns
smallest built up area. Second largest built up area is Shwe Pyi Thar and the
second smallest is Panbedan township.

This research work performs well on the comparing relational
database, object relational database and object oriented database for GIS data
of 33 townships in Yangon Region. It also supports well for understanding
how to build the databases and to retrieve from these database by using query
languages. This research analyses on various types of databases and their
query languages about structured query language in SQL server 2010 and
object query language in db4o. In this research, Object Relational database is
the more effective than other databases. Therefore one of the future works is
to extend this research will build the data center for three dimensional urban
planning of Yangon Region GIS data, and will retrieve these data by using
oracle spatial query language. So, the query performance will view different
urban land use pattern with three dimensions. Furthermore, the system can
apply city planning of Yangon Region land use.
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MASSIVELY PARALLEL POPULATION-BASED
MONTE CARLO METHODS
WITH MANY-CORE PROCESSORS

Wint Pa Pa Kyaw"

Abstract

This research presents the utility of graphics cards to perform
massively parallel simulation of advanced Monte Carlo methods. Graphics
cards, containing multiple Graphics Processing Units (GPUs), are self-
contained parallel computational devices that can be housed in conventional
desktop and laptop computers and can be thought of as prototypes of the
next generation of many-core processors. For certain classes of population-
based Monte Carlo (MC) algorithms they offer massively parallel
simulation, with the added advantage over conventional distributed multi-
core processors that they are cheap, easily accessible, easy to maintain, easy
to code, dedicated local devices with low power consumption. On a
canonical set of stochastic simulation examples including population-based
Markov chain Monte Carlo (MCMC) methods and Sequential Monte Carlo
(SMC) methods, speedups are found from 35 to 500 fold over conventional
single-threaded computer code. These findings suggest that GPUs have the
potential to facilitate the growth of statistical modelling into complex data
rich domains through the availability of cheap and accessible many-core
computation.

Keywords: Sequential Monte Carlo, Population-Based Markov Chain
Monte Carlo, General Purpose Computation on Graphics
Processing Units, Many-Core Architecture, Stochastic
Simulation, Parallel Processing

Introduction

This research describes the utility of graphics cards involving Graphics
Processing Units (GPUs) to perform local, dedicated, massively parallel
stochastic simulation. GPUs were originally developed as dedicated devices to
aid in real-time graphics rendering. However recently there has been an
emerging literature on their use for scientific computing as they house
multicore processors. Many advanced population-based Monte Carlo (MC)
algorithms are ideally suited to GPU simulation and offer significant speed up
over single CPU implementation. The focus is on the parallelization of general
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sampling methods. Moreover, this research shows how the choice of
population-based MC algorithm for a particular problem can depend on
whether one is running the algorithm on a GPU or a CPU.

To gain an understanding of the potential benefits to statisticians this
research has investigated speedups on a canonical set of examples taken from
the population-based MC literature. These include Bayesian inference for a
Gaussian mixture model computed using a population-based Markov Chain
Monte Carlo (MCMC) method. The idea of splitting the computational effort of
parallelizable algorithms amongst processors is certainly not new to
statisticians. In fact, distributed systems and clusters of computers have been
around for decades. Many-core processor communication has very low
latency and very high bandwidth due to high-speed memory that is shared
amongst the cores. Low latency here means the time for a unit of data to be
accessed or written to memory by a processor is low while high bandwidth
means that the amount of data that can be sent in a unit of time is high. For
many algorithms, this makes parallelization viable where it previously was
not. In addition, the energy efficiency of a many-core computation compared
to a single-core or distributed computation can be improved. This is because
the computation can both take less time and require less overhead. Finally,
these features enable the use of parallel computing for researchers outside
traditional high-cost centers housing high-performance computing clusters.

The speedup is chosen to investigate for the simulation of random
variates from complex distributions, a common computational task when
performing inference using MC. In particular, population-based MCMC
methods and SMC methods are focused on for producing random variates as
these are not algorithms that typically see significant speedup on clusters due
to the need for frequent, high-volume communication between computing
nodes. This work focuses on the suitability of many-core computation for MC
algorithms whose structure is parallel, since this is of broad theoretical
interest, as opposed to a focusing on parallel computation of application-
specific likelihoods.

The algorithms are implemented for the Compute Unified Device
Architecture (CUDA) and make use of GPUs which support this architecture.
CUDA offers a fairly mature development environment via an extension to
the C programming language. For applications CUDA version 5.5 with an
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NVIDIA GT 750M are used. The GT 750M has 384 multiprocessors. For all
current NVIDIA cards, a multiprocessor comprises 8 arithmetic logic units
(ALUs), 2 special units for transcendental functions, a multithreaded
instruction unit and on-chip shared memory. For example, for single-precision
floating point computation, one can think of the GT 750 as having 3072 (384
x 8) single processors. The current generation of GPUs is 4-8 times faster at
single precision arithmetic than double precision. Single precision seems
perfectly sufficient for the applications in this research since the variance of
the Monte Carlo estimates exceeds the perturbations due to finite machine
precision.

Graphics Processing Unit for Parallel Processing

GPUs have evolved into many-core processing units, currently with up
to 30 multiprocessors per card, in response to commercial demand for real-
time graphics rendering, independently of demand for many-core processors
in the scientific computing community. As such, the architecture of GPUs is
very different to that of conventional CPUs. An important difference is that
GPUs devote proportionally more transistors to ALUs and less to caches and
flow control in comparison to CPUs. This makes them less general purpose
but highly effective for data-parallel computation with high arithmetic
intensity, i.e. computations where the same instructions are executed on
different data elements and where the ratio of arithmetic operations to
memory operations is high. This Single Instruction Multiple Data (SIMD)
architecture puts a heavy restriction on the types of computation that
optimally utilize the GPU but in cases where the architecture is suitable it
reduces overhead.

Figure 1 gives a visualization of the link between a host machine and
the graphics card, emphasizing the data bandwidth characteristics of the links
and the number of processing cores. A program utilizing a GPU is hosted on a
CPU with both the CPU and the GPU having their own memory. Data is
passed between the host and the device via a standard memory bus, similar to
how data is passed between main memory and the CPU. The memory bus
between GPU memory and the GPU cores is both wider and has a higher
clock rate than a standard bus, enabling much more data to be sent to the cores
than the equivalent link on the host allows. This type of architecture is ideally
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suited to data-parallel computation since large quantities of data can be loaded
into registers for the cores to process in parallel. In contrast, typical computer
architectures use a cache to speed up memory accesses using locality
principles that are generally good but do not fully apply to data-parallel
computations, with the absence of temporal locality most notable.

mMemaory memaonry

CPU cores GIPU cores
host graphics card

Figure 1: Link between host and graphics card. The thicker lines represent
higher data bandwidth while the squares represent processor cores.

Graphics Processing Units Parallelizable Algorithms

In general, if a computing task is well-suited to SIMD parallelization
then it will be well-suited to computation on a GPU. In particular, data-
parallel computations with high arithmetic intensity (computations where the
ratio of arithmetic operations to memory operations is high) are able to attain
maximum performance from a GPU. This is because the volume of very fast
arithmetic instructions can hide the relatively slow memory accesses. It is
crucial to determine whether a particular computation is data-parallel on the
instruction level when determining suitability. From a statistical simulation
perspective, integration via classical Monte Carlo or importance sampling is
ideal computational tasks in a SIMD framework. This is because each
computing node can produce and weight a sample in parallel, assuming that
the sampling procedure and the weighting procedure have no conditional
branches. If these methods do branch, speedup can be compromised by many
computing nodes running idle while others finish their tasks. This can occur,
for example, if the sampling procedure uses rejection sampling.

In contrast, if a computing task is not well-suited to SIMD
parallelization then it will not be well-suited to computation on a GPU. In
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particular, task-parallel computations where one executes different
instructions on the same or different data cannot utilize the shared flow
control hardware on a GPU and often end up running sequentially. Even when
a computation is data-parallel, it might not give large performance
improvements on a GPU due to memory constraints. This can be due to the
number of registers required by each thread or due to the size and structure of
the data necessary for the computation requiring large amounts of memory to
be transferred between the host and the graphics card.

Many statistical algorithms involve large data sets, and the extent to
which many-core architectures can provide speedup depends largely on the
types of operations that need to be performed on the data. For example, many
matrix operations derive little speedup from parallelization except in special
cases, e.g. when the matrices involved are sparse. It is difficult to classify
concisely the types of computations amenable to parallelization beyond the
need for data-parallel operations with high arithmetic intensity. However,
experience with parallel computing should allow such classifications to be
made prior to implementation in most cases.

Parallelizable Sampling Methods

A number of sampling methods for parallel implementations can be
produced without significant modification. There is an abundance of statistical
problems that are essentially computational in nature, especially in Bayesian
inference. In many such cases, the problem can be distilled into one of
sampling from a probability distribution whose density z, pointwise and up to
a normalizing constant can be computed, that is, n*(:) where © (x) = n*(x)/Z
can be computed. A common motivation for wanting samples from 7z is so
expectations of certain functions can be computed. If such a function is
denoted by ¢, the expectation of interest is

Ir= . ; r o
/xex & (36) 7 (36) dxc
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The Monte Carlo estimate of this quantity is given by

N
. 1 g
Iyc & ~ > " o(x?)

i=1

{x} ;Ll are samples from 7.

Samples from 7 in order to compute this estimate are needed. In
practice, one often cannot sample from 7 directly. There are two general
classes of methods for dealing with this. The first are importance sampling
methods, where the weighted samples are generated from 7 by generating N
samples according to some importance density y proportional to y* and then
estimating / via

N
ff.:-‘.‘ B § TT-"(‘-)@(_X(Z_))

=1
where W are normalized importance weights
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The asymptotic variance of this estimate is given by C(¢, z, y)/N, that is,
a constant over N. For many problems, it is difficult to come up with an
importance density y such that C(¢, =, y) is small enough to attain reasonable
variance with practical values of V.

The second general class of methods are MCMC methods, in which an
ergodic z-stationary Markov chain is sequentially constructed. Once the chain
has converged, all the dependent samples can be used to estimate /. The major
issue with MCMC methods is that their convergence rate can be prohibitively
slow in some applications.

For example, naive importance sampling, like classical Monte Carlo, is
intrinsically parallel. Therefore, in applications where one have access to a
good importance density y, linear speedup can be got with the number of
processors available. Similarly, in cases where MCMC converges rapidly, the
estimation of I can be parallelized by running separate chains on each
processor. While these situations are hoped for, they are not particularly
interesting from a parallel architecture standpoint because they can run
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equally well in a distributed system. Finally, this research is not concerned
with problems for which the computation of individual MCMC moves or
importance weights are very expensive but themselves parallelizable. While
the increased availability of parallel architectures will almost certainly be of
help in such cases, the focus here is on potential speedups by parallelizing
general sampling methods. Example of recent work in this area can be found
in this research, in which speedup is obtained by parallelizing evaluation of
individual likelihoods.

Population-Based Markov chain Monte Carlo

A common technique in facilitating sampling from a complex
distribution 7 with support in X is to introduce an auxiliary variable ae 4 and
sample from a higher-dimensional distribution = with support in the joint
space AxX, such that = admits 7 as a marginal distribution. With such
samples, one can discard the auxiliary variables and be left with samples from
7. A kernel will generally refer to a Markov chain transition kernel as opposed
to a CUDA kernel.

This idea is utilized in population-based MCMC, which attempts to
speed up convergence of an MCMC chain for 7 by instead constructing a
Markov chain on a joint space X" using M — 1 auxiliary variables each in X.
In general, one have M parallel ‘subchains’ each with stationary distribution
mi.i € M E{1,....M} and my = r. Associated with each subchain i is an
MCMC kernel L; that leaves z; invariant, and which one run at every time
step. Of course, without any further moves, the stationary distribution of the
joint chain is

M

m(x1:00) = H i ()

i=1
and so if x1. ~ 7, then x) ~ 7. This scheme does not affect the convergence
rate of the independent chain M. However, since mixtures of f-stationary
MCMC kernels can be cycled without affecting the stationary distribution of
the joint chain, certain types of interaction between the subchains can be
allowed which can speed up convergence. In general, a series of MCMC
kernels that act on subsets of the variables is applied. The number of second-
stage MCMC kernels are denoted by R and the MCMC kernels themselves as
Ki, ... ,Kr, where kernel K; operates on variables with indices in /;cM. The
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idea is that the R kernels are executed sequentially and it is required that each
K;jleave I1 ;e j m; invariant.

Given 7, there are a wide variety of possible choices for M, 7 1.4-1, Li:u,
R, Ii.r and K.z which will affect the convergence rate of the joint chain. The
first stage of moves involving Li.y is trivially parallelizable. However, the
second stage is sequential in nature. For a parallel implementation, it is
beneficial for the /;’s to be disjoint as this allows the sequence of exchange
kernels to be run in parallel. Of course, this implies that /;.z should vary with
time since otherwise there will be no interaction between the disjoint subsets
of chains. Furthermore, if the parallel architecture used is SIMD (Single
Instruction Multiple Data) in nature, it is desirable to have the K;’s be nearly
identical algorithmically. The last consideration for parallelization is that
while speedup is generally larger when more computational threads can be run
in parallel, it is not always helpful to increase M arbitrarily as this can affect
the convergence rate of the chain. However, in situations where a suitable
choice of M is dwarfed by the number of computational threads available, one
can always increase the number of chains with target 7 to produce more
samples.

Population-Based MCMC Algorithm

There are two types of moves:

1. In parallel, each chain i performs an MCMC move targetting +=i_

2. In parallel, adjacent chains i and i + / perform an MCMC ‘exchange’

move targeting "7+

A simple exchange move at time n proposes to swap the values of the
two chains and has acceptance probability

(xS Yar 4 (xE™)

}
O i (53D

min{1,

In order to ensure (indirect) communication between all the chains, the
exchange partners are picked at each time with equal probability from

({1.2h.... (M= 1.M}}and {{2.3)..... (M—2.M—1}}
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Sequential Monte Carlo Samplers

SMC samplers are a more general class of methods that utilize a
sequence of auxiliary distributions mo, ..., mt, much like population-based
MCMC. However, in contrast to population-based MCMC, SMC samplers
start from an auxiliary distribution o and recursively approximate each
intermediate distribution in turn until finally mr = m is approximated. The
algorithm has the same general structure as classical SMC, with differences
only in the types of proposal distributions, target distributions and weighting
functions used in the algorithm.

The difference between population-based MCMC and SMC samplers
is subtle but practically important. Both can be viewed as population-based
methods on a similarly defined joint space since many samples are generated
at each time step in parallel. However, in population-based MCMC the
samples generated at each time each have different stationary distributions and
the samples from a particular chain over time provide an empirical
approximation of that chain’s target distribution. In SMC samplers, the
weighted samples generated at each time approximate one auxiliary target
distribution and the true target distribution is approximated at the last time
step.

Algorithmic Details
1. Attimet=0:

Fori=1,...,N, sample x5 ~ 1(%o)

Fori=1,...,N, evaluate the importance weights:

mo(x§’)

n(x§")

2. Fortimest=1,..., T:
Fori=1,...,N, sample

1 ~ (e, ).
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Fori=1,...,N, evaluate the importance weights:

(i) Hr(x(r”)l-r—w (xf‘”~ x£1}1
T

Tt 1 (xl[‘i)1 )Kf(x(ri)1 - xgn) .

wr(xi")) oc Wr (X

Normalize the importance weights. Depending on some criteria, resample the
particles. Set

wrm:l for i=1,....N

For the special case where L,.; is the associated backwards kernel for K , ie.

fl’r(Xf)!'—r—1(Xf- Xr—1) = H'i(xr—‘[JKf(Xi—l-Xf)

the incremental importance weights simplify to

Q)

e (X,

) i
WD) e e ) Py
The normalization step is a reduction operation and a divide operation. The
resampling step involves a parallel scan.

Implementation of Canonical Examples

To demonstrate the types of speed increase one can attain by utilizing
GPUs, each method to a representative statistical problem is applied. Bayesian
inference for a Gaussian mixture model is used as an application of the
population-based MCMC and SMC samplers.

The applications are representative of the types of problems that these
methods are commonly used to solve. In particular, while the distribution of
mixture means given observations is only one example of a multimodal
distribution, it can be thought of as a canonical distribution with multiple
well-separated modes. Therefore, the ability to sample points from this
distribution is indicative of the ability to sample points from a wide range of
multimodal distributions.
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Mixture Modeling
Finite mixture models are a very popular class of statistical models as
they provide a flexible way to model heterogeneous data. Let y = y1.» denote
identically independent distribution (i.i.d) observations where y;jeR for j {1,
. ,m}. A univariate Gaussian mixture model with & components states that

each observation is distributed according to the mixture density
k

POVilk, 1. Wik —1) = E w;i F(vilp:. o),

i=1
where f denotes the density of the univariate normal distribution. The density
of y is then equal to

e 8
[/ Pvjlierie, Ok, wike—1)

For simplicity, assume that k, wix—1 and o1 are known and that the prior
distribution on y is uniform on the k-dimensional hypercube [—10, 10]*. k = 4,
oi=0=0.55 wi=w=1l/kfori €{1, ..., k} are set. m = 100 observations are
simulated for u = u1.4 = (=3, 0, 3, 6). The resulting posterior distribution for u
is given by

plply) o p(ylp)I(pe € [—10, 10]H)

The main computational challenge associated with Bayesian inference
in finite mixture models is the nonidentifiability of the components. As
exchangeable priors have been used for the parameters ui.4, the posterior
distribution p(u|y) is invariant to permutations in the labeling of the
parameters. Hence this posterior admits k! = 24 symmetric modes, which
basic random-walk MCMC and importance sampling methods typically fail to
characterize using practical amounts of computation. Generating samples
from this type of posterior is a popular method for determining the ability of
samplers to explore a high-dimensional space with multiple well-separated
modes.

Population-Based Markov chain Monte Carlo

The auxiliary distributions 7.1 following the parallel tempering
methodology are selected, that is, 7(x) ®z(x)’; with 0 <1 < ... <fu =1 and
use M = 200. This class of auxiliary distributions is motivated by the fact that
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MCMC converges more rapidly when the target distribution is flatter. For this
problem, the cooling schedule ; = (i/M)* and a standard N(0,/k) random walk
Metropolis-Hastings kernel are used for the first stage moves.

For the second stage moves, the basic exchange move are used, chains
i and j swap their values with probability min{1, a;;} where

T (X7 )IT 5 (X )

iy = T (X }TT (X 5 ) )

Further, the exchanges to take place only between adjacent chains are
allowed so that all moves can be done in parallel. R = M/2 and I1:R is either
{1, 2}, {3, 4}, ... , {M— 1, M}} or {{2,3}, {4, 5}, ..., {M—-2, M — 1},
{M, 1}}, each with probability half are used. Emphasize that all first stage
MCMC moves are executed in parallel on the GPU, followed by all the
exchange moves being executed in parallel. The following code segments are
to get compute value function properties for MCMC.

void memc(int M, int nb, int nt)

{
generate mix_data(k, sigma, mus, data_array, L);
compute cil ci2(sigma, 1.0f/k, cl, c2);
populate rand d(d_array_init, numChains * k);
multiply(numChains * k, d_array init, d array_init, 20, nb, nt);
add(numChains * k, d_array_init, d_array init, -10, nb, nt);

TO tCSL LT Lulllputlauulidal ulc 104ullcu vy ulC alguliudin uic 11uivcol
of chains are allowed to vary but fix the number of points which wishing to
sample from the marginal density 7z = 7 at 8192. As such, an increase in the
number of chains leads to a proportional increase in the total number of points
sampled.

Sequential Monte Carlo Sampler

As with population-based MCMC, a tempering approach and the same
cooling schedule are used, this is, 7(x) ®z(x)’; with f; = (¢/M)* and M = 200.
The uniform prior on the hypercube are used to generate the samples {xo'"¥}
and perform 10 MCMC steps with the standard N(0,/x) random walk
Metropolis-Hastings kernel at every time step. The generic backward kernel is
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used for the case where each kernel is 7 -stationary so that the unnormalized
incremental importance weights are of the form n(X~1)/m—1(X~1). The
following code segments are to compute value function properties for SMCS.

void testMG(int N, int nb, int nt)

{
generate_mix_data(k, sigma, mus, data_array, L);
compute cil ci2(sigma, 1.0f/k, cl, c2);
populate rand d(d array init, N * k);
multiply(N * k, d_array _init, d_array init, 20, nb, nt);
add(N * k, d_array init, d _array _init, -10, nb, nt);
testMG(N, k, T, numSteps, d_array init, temps, h_args tl, h _args t2, nb, nt);
testMG_host(N, k, T, numSteps, array_init, temps, h_args tl, h_args t2);

} Results and Discussion

The parallel code is run on a computer equipped with an NVIDIA GT
750M GPU, and the reference single-threaded code is run on a Intel
(R)core(TM)i7 4500U CPU 1.80GHz processor. The resulting processing
times and speedups are given in Tables 1-2.

Population-Based Markov chain Monte Carlo Results

Table 1: Running times for the Population-Based MCMC Sampler for various
numbers of chains M.

N = 8192 points are sampled from chain M.

M CPU(secs) | GT 750 M(secs) | Speedup

(1) 8 1.33 0.93 1

(2) 32 5.32 1.03 5

(3) 128 20.00 1.89 11
(4)512 62.40 1.24 50
(5)2048 249.64 1.43 175
(6)8192 998.42 2.32 430
(7)32768 4002.00 7.73 518
(8)131072 | 16218.00 28.35 572
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Execution Time (sec) Vs No. of Chains
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Figure 2: The relation of execution time and number of chains
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Figure 3: The relation of speedup and number of chains

Processing times for MCMC code are given in Table 1, in which one
can see that using 131072 chains is impractical on the CPU but entirely
reasonable using the GPU. Figure 2 shows that GPU time is faster than CPU
time. Figure 3 shows that speedup goes faster with increasing the number of
chains. So it can be observed that parallel computing is more suitable for
enormous data.
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Sequential Monte Carlo Sampler Results

Table 2: Running times for the Sequential Monte Carlo Sampler for various

values of N.
GT 750 M
P
N CPU(secs) (secs) Speedup
(1)8192 266.40 0.60 444
(2)16384 529.20 1.11 477
(3)32768 1062.00 2.19 485
(4)65536 2118.00 4.50 471
(5131072 4236.00 8.08 524
(6)262144 8460.00 16.22 522
Execution Time (sec) Vs No. of Values
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Figure 4: The relation of execution time and number of values
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Figure 5: The relation of speedup and number of values
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Processing times for SMCS code are given in Table 2. GPU execution
time is faster than CPU execution time in SMC sampler that shown in Figure
4. Figure 5 shows that speedup goes faster with increasing the number of
values.

Discussion

The speedup for the population-based MCMC algorithm and the SMC
sampler is tremendous. In particular, the evaluation of p(y|p) for the mixture-
modelling application has high arithmetic intensity since it consists of a
product-sum operation with 400 Gaussian log-likelthood evaluations
involving only 104 values. In fact, because of the low register and memory
requirements, so many threads can be run concurrently that SIMD calculation
of this likelihood can be sped up by 500 times on the GT 750M. Estimation of
static parameters in continuous state-space models or the use of SMC
proposals within MCMC can require thousands of runs, so a speedup of this
scale can substantially reduce the computation time of such approaches.
Speedups can be expected in the vicinity of 500 with SMC if few resampling
steps are required and each weighting step has small space complexity and
moderate time complexity.

While CUDA have been used to implement the parallel components of
algorithms, the results are not necessarily specific to this framework or to
GPUs. It is expected that the many-core processor market will grow and there
will be a variety of different devices and architectures to take advantage of.
However, the SIMD architecture and the sacrifice of caching and flow control
for arithmetic processing is likely to remain since when it is well-suited to a
problem it will nearly always deliver considerable speedup. For users who
would like to see moderate speedup with very little effort, there is work being
done to develop libraries that will take existing code and automatically
generate code that will run on a GPU.

The speedups attainable with many-core architectures have broad
implications in the design, analysis, and application of SMC and population-
based MCMC methods. In application, this does not occur until one have
around 4096 auxiliary distributions. One might notice that this number is far
larger than the number of processors on the GPU. This is due to the fact that
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even with many processors, significant speedup can be attained by having a
full pipeline of instructions on each processor to hide the relatively slow
memory reads and writes. In both SMC and MCMC, it is also clear from this
case study that it is beneficial for each thread to use as few registers as
possible since this determines the number of threads that can be run
simultaneously. This may be of interest to the methodology community since
it creates a space-time trade-off that might be exploited in some applications.

A consequence of the space-time trade-off mentioned above is that
methods which require large numbers of registers per thread are not
necessarily suitable for parallelization using GPUs. For example, operations
on large, dense matrices that are unique to each thread can restrict the number
of threads that can run in parallel and hence dramatically affect potential
speedup. In cases where data are shared across threads, however, this is not an
issue. In principle, it is not the size of the data that matters but the space
complexity of the algorithm in each thread that dictates how scalable the
parallelization is.

Conclusion

The potential of parallel processing to aid in statistical computing is
well documented. Graphics cards for certain generic types of computation
offer parallel processing speedups with advantages. They are Cost: graphics
cards are relatively cheap, being commodity products. Accessibility: graphics
cards are readily obtainable from consumer-level computer stores or over the
internet. Maintenance: the devices are self-contained and can be hosted on
conventional desktop and laptop computers. Speed: in line with multi-core
CPU clusters, graphics cards offer significant speedup, albeit for a restricted
class of scientific computing algorithms. Power: GPUs are low energy
consumption devices compared to clusters of traditional computers, with a
graphics card requiring around 200 Watts. While improvements in energy
efficiency are application-specific, it is reasonable in many situations to
expect a GPU to use around 10 per cent of the energy to that of an equivalent
CPU cluster. Dedicated and local: the graphics cards slot into conventional
computers offering the user ownership without the need to transport data
externally.



160 J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3

The parallelization of the advanced Monte Carlo methods described here
opens up challenges both for practitioners and for algorithm designers. There
are already an abundance of statistical problems that are being solved
computationally and technological advances, if taken advantage of by the
community, can serve to make previously impractical solutions eminently
reasonable and motivate the development of new methods.

The speedups have practical significance. Arithmetic intensity is
important. There is a roughly linear penalty for the space complexity of each
thread. Emerging many-core technology is likely to have the same kinds of
restrictions. There is a need for methodological attention to this model of
computation. For example, SMC sampler methodology can be more suitable
to parallelization when the number of auxiliary distributions one wants to
introduce is not very large. There are many other algorithms that will benefit
from this technology.
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