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FINDING A NEW METHOD FOR THE SOLUTION OF 
NONLINEAR EQUATIONS  (࢞)ࢌ = ૙ 

Ohnmar Nwe* 
 

Abstract 
              In this paper, the weak points of some numerical methods which 

can be used to find the solutions of nonlinear equations  ݂(ݔ) = 0 are 
introduced.Then the new method (OhnmarNwe’s method) is presented. And 
also the convergence of the new method is proved and comparison of the 
convergence for the new method and Newton’s Method are expressed. 
Finally, the weak point of the new method is discussed. 

 Introduction 
            We used the numerical methods for finding a zero of a continuous 
function. There are several methods, in which, we would like to discuss about 
the weak points of some numerical methods. We choose the methods are 
Bisection Method, Method of False Position, Secant Method, Newton – 
Raphson Method and Muller’s Method. Our intention is to compare with the 
new method. 

Weak Points of Some Methods 
In this paper, we define the function ݂ is continuous on the interval that we 
consider. 
            In Bisection Method, we need ݂ ∈ ,ܽ]ܥ ܾ] and to find ݎ ∈ [ܽ, ܾ] such 
that݂(ݎ) = 0.  The requirements are݂(ܽ) and ݂(ܾ) have opposite signs. 
 
 
 
 
 

The formula is ܿ௡ =  ܽ݊+ܾ݊2 for all ݊. Here only the average of the interval         
( i.e., ௔೙ା௕೙

ଶ ) is used. 

 ݎ

(ܽ, ݂(ܽ) )

(ܿ, ݂(ܿ )) (ܾ, ݂(ܾ))   

ܽ  ܿ  ܾ  
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The convergence of the method is base on the sense that 
ݎ| − ܿ௡|  ≤  ܾ−ܽ

2݊+1for݊ = 0,1, … … 
The weakness of this method is the convergence speed is fairly slow. If 
(ݔ)݂  =  0 has several roots in [ܽ, ܾ], it is not easy to calculate as a different 
starting points and intervals must be used to find each root. 

In Method of False Position, ݂(ܽ)  and  ݂(ܾ)  need to have opposite 
signs. It is used the line joining the points (ܽ, ݂(ܽ))and (ܾ, ݂(ܾ)). 
 
 
 
 
 
The formula is ܿ௡ = ܾ௡ − ݂(ܾ݊)(ܾ݊−ܽ݊)

݂(ܾ݊)−݂(ܽ݊) for all ݊.The size of  the݂(ܾ௡) and the 
interval (ܾ௡ − ܽ௡ ) are used. 
The convergence of this method is based on the sense that (ܾ௡ − ܽ௡) → 0 as 
݊ → ∞. 
This method is faster than the bisection method. But it is also not easy to 
calculate for the several roots in an interval. 
The weak points of the Bisection Method and Method of False Position are 
they need two initial points which have opposite signs of function value. Also 
these methods are not so easy to find the several roots.  
            In Newton-Raphson Method (Newton’s Method), ݂(ݔ), ݂ᇱ(x) and 
݂ᇱᇱ(x) need to be continuous near a root. This method used the tangent lines. 
 
 
 
 

 ܾ  ܿ ܽ  ݎ

(ܾ, ݂(ܾ) ) (ܿ, ݂(ܿ) ) 

(ܽ, ݂(ܽ) )
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The formula is ݌௞ = p୩ିଵ − f(pk−1)

f ′(pk−1)for ݇ = 1,2, …. 
            The convergence of this method is based on the Taylor polynomial and 
the fixed-point iteration. 
            This method is one of the most useful method. It is faster than the 
Bisection Method and Method of False Position. This method requires two 
function evaluations these are ݂(݌௞ିଵ)and ݂ᇱ(p୩ିଵ). And have difficulty if 
݂ᇱ(p୩ିଵ) = 0.  
            This means local maximum (or minimum) is in the interval. 
Sometimes the slope of ݂ᇱ(݌଴)is small and the tangent line to the curve ݕ =
 converges to some other {௞݌} is nearly horizontal. Then the sequence (ݔ)݂
root. Another possibility is cycling which occurs when the terms in the 
sequence {݌௞} tend to repeat. 
 
 
 
 
 
Sometime the sequence does not converge for such a function  ݂(ݔ) = tan  .ݔ
 
 
 
 

,଴݌) ,ଵ݌) ((଴݌)݂  ((ଵ݌)݂

 ݎ ଴݌ ଵ݌

 ଵ݌ ଶ݌ ଴݌ ଷ݌

 ଵ݌ ଶ݌ ଷ݌ ଴݌
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            In Secant Method, two initial points (݌଴, ,ଵ݌) and((଴݌)݂  near ((ଵ݌)݂
the root are needed. It is used the line joining these two points. 
 
 
 
 
 
The formula is ݌௞ାଵ = ௞݌ − ݂൫݇݌൯(1−݇݌−݇݌)

݂൫݇݌൯−݂(1−݇݌) for all ݇. 
The convergence of this method is super linear. It is faster than a linear 

rate. It is almost as fast as Newton’s Method. Secant Method needs only one 
function evaluation and is often faster in time, even though more iterates are 
needed to attain a similar accuracy with Newton’s Method. The disadvantage 
of the secant method is sometime it may not converge when ݂(݌௞) ≈  (௞ିଵ݌)݂
. 
 
 
 
 
 
 In Muller’s Method, the three initial points ൫݌଴, ,൯(଴݌)݂ ൫݌ଵ,   ൯(ଵ݌)݂
and൫݌ଶ,  ൯ are needed. Theyare used to construct a parabola,second order(ଶ݌)݂
polynomial, which is used to fit to the last three obtained points. 
 
 
 
 
 

 ଴݌ ଵ݌ ଶ݌ ݎ
ݕ =  (ݔ)݂

,ଵ݌) ,଴݌) ((ଵ݌)݂  ((଴݌)݂

 ଴݌ ଵ݌ ଶ݌

ݕ =  (ݔ)݂

,ଶ݌)  ((ଶ݌)݂

,ଵ݌) ,଴݌) ((ଵ݌)݂  ((଴݌)݂

 ଴݌ ଵ݌ ଶ݌ ଷ݌
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In this method, it is based on the variable ݐ = ݔ −  ଶ and use the differences݌
ℎ଴ = ଴݌ − ଶandℎଵ݌ = ଵ݌ −  .ଶ݌

And then use the quadratic polynomial, involving the variable,  
ݕ = ଶݐܽ + ݐܾ + ܿ . 

This method can be used to find the imaginary roots and it is no needed to use 
derivatives.  The convergence rate is faster than the Secant Method and almost 
as fast as Newton’s Method.    
The weakness of this method is three initial points are needed and extraneous 
roots can be found as this method used the quadratic formula. 

New Method ( Ohnmar Nwe’s Method ) 
            If ݂(ݔ) is continuous on the interval [ܽ, ܾ] and it will across the X-axis 
at a root ݌ that lie in the interval [ܽ, ܾ]. We draw a line by connecting the 
points (݌଴, 0)and (݌଴, ,଴݌) Then we construct a circle as centre .((଴݌)݂ 0) and 
radius ݂(݌଴). 
 
 
 
 
 
 
Then this circle pass through the X-axis at (݌ଵ, 0). For the next step, construct 
the circle as centre (݌ଵ, 0) and radius ݂(݌ଵ). By proceeding, the centers of the 
circles are closer and closer to the root ݌. Here the equation of the circle with 
centre (݌଴, 0) and radius ݂(݌଴) is  

ݔ) − ଴)ଶ݌ + ݕ) − 0)ଶ =  ଶ                                      (1)(଴݌)݂
This circle equation (1) pass through the X-axis at ݌ଵ. So that an equation 
relating ݌ଵ and ݌଴ can be found. 
 

,ଵ݌)  ((ଵ݌)݂

 ଵ݌ ଶ݌ ଷ݌ ଴݌

,଴݌)  ((଴݌)݂
,ଶ݌)  ((ଶ݌)݂

,ଷ݌)  ((ଷ݌)݂
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ଵ݌) − ଴)ଶ݌ + (0 − 0)ଶ =  ଶ(଴݌)݂
ଵ݌ = ଴݌ ∓  (2)              ,(଴݌)݂

When ݌௞ିଵ and ݌௞  are used in place of ݌଴ and ݌ଵ the general rule is 
established as follow 

௞݌ = ௞ିଵ݌ ∓  .(௞ିଵ݌)݂
The convergence of this method is based on the idea that  |݌௞ − |௞ିଵ݌ → 0  as  
(௞݌)݂ → 0.  
The decision step for sign(+) or (−) is to analyze 
|(௞݌)݂|    <  .|(௞ିଵ݌)݂|
Theorem ( Ohnmar Nwe’s Theorem )  
Assume that ݂ ∈ ,ܽ]ଵܥ ܾ] and there exist a number ݌ ∈ [ܽ, ܾ] where           
(݌)݂ = 0. Then there exist a ߜ > 0  such that the sequence {݌௞}௞ୀ଴ஶ  defined 
by the iteration 

௞݌ = (௞ିଵ݌)݃ = ௞ିଵ݌ ∓ ݇ for (௞ିଵ݌)݂ = 1,2,3, … 
will converge to ݌  for any initial approximation ݌଴ ∈ ݌] − ,ߜ ݌ +  Here ) . [ߜ
the function ݃(ݔ) is defined by ݃(ݔ) = ݔ ∓  and it is used as the iteration(ݔ)݂
function.) 
Proof. We will use the fixed-point theorem to prove. We have to remind the 
fixed-point theorem.  
(Fixed-point Theorem – Assume that ݃(ݔ) and ݃ᇱ(ݔ) are continuous on a 
balanced interval (ܽ, ܾ) = ݌) − ,ߜ ݌ +  that contains the unique fixed point (ߜ
 .଴  is chosen in this interval݌ and that the starting value ݌
            If |݃ᇱ(ݔ)| ≤ ܭ < 1 for all ܽ ≤ ݔ ≤ ܾ. Then the iteration                         
௡݌ =  .is an attractive fixed-point ݌ In this case .݌ will converge to  (௡ିଵ݌)݃
            If |݃ᇱ(ݔ)| > 1  for all ܽ ≤ ݔ ≤ ܾ, then the iteration exhibits local 
divergence.) 
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In our method, the iteration function is  
(ݔ)݃ = ݔ ∓  (ݔ)݂

then    ݃ᇱ(ݔ) = 1 ∓ ݂ᇱ(ݔ) . 
To be convergent, ݃ᇱ(ݔ)  must be less than 1. 
   |݃ᇱ(ݔ)| = |1 ∓ ݂ᇱ(ݔ)| < 1 
Therefore, a sufficient condition for ݌଴ to initialize a convergent sequence 
௞ୀ଴ஶ{௞݌}  which converges to a root of ݂(ݔ) = 0 is that ݌଴ ∈ ݌] − ,ߜ ݌ +  and [ߜ
that ߜ be chosen so that  
   |1 ∓ ݂ᇱ(ݔ)| < 1     for all    ݔ ∈ ݌] − ,ߜ ݌ +  .[ߜ
 

Comparison of Newton’s Method And Ohnmar Nwe’s Method 
  Now we would like to express some examples that will show the comparison 
of convergent rate between Newton’s method and our method. 
Table 1.  Comparison of convergent rate for the function ݂(ݔ) = ଷݔ + ݔ3 + 2 

with   ݌଴ = 0 
k Newton’s Method Ohnmar Nwe’s Method 
0 0 0 
1 -0.6667 -2 
2 -0.9333  
3 -0.9961  
4 -1.0000  

 Table 2.  Comparison of convergent rate for the function ݂(ݔ) = ଷݔ + ݔ3 + 2 
with ݌଴ = −2.5 

k Newton’s Method Ohnmar Nwe’s Method 0 -2.5 -2.5 
1 -2.1250 -1.75 
2 -2.0125 -1.9375 
3 -2.0002 -1.9961 
4 -2.0000 -2 
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Table 3. Comparison of convergent rate for the function ݂(ݔ) = ଷݔ + ݔ3 + 2 
with   ݌଴ = −3 

 
k Newton’s Method OhnmarNwe’s Method 0 -3 -3 
1 -2.3333 -1 
2 -2.0667  
3 -2.0039  
4 -2.0000  

 
Table 4. Comparison of convergent rate for the function ݂(ݔ) = ଷݔ − ݔ3 + 2 
with  ݌଴ = 0 
 

k Newton’s Method OhnmarNwe’s Method 0 0 0 
1 0.6667 -2 
2 0.8444  
3 0.9244  
4 0.9627  
5 0.9815  
6 0.9908  
7 0.9954  
8 0.9977  
9 0.9988  

10 0.9994  
11 0.9997  
12 0.9999  
13 0.9999  
14 1.0000  

 
Our method is needed only one initial point and convergent rate is faster than 
the Newton’s method if the function has enough slope. The formula is also 
very simple and it is very easy to calculate. 
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Pitfall of Ohnmar Nwe’s Method 
            There are some difficulties to use our method if the function ݂(ݔ) has 
several roots in the interval that we consider. At that condition, it may be jump 
of  some roots although it gives a root . Another possibility is out of the 
interval if ݂(݌଴) is very large.  
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WAVELETS ON GROUPS 
 

KhinWah Win* 
 

Abstract 
This paper is an expository survey of basic concepts of Wavelet 

Analysis. We shall discuss wavelets in L2 (R) and L2 (G), where G is a 
locally compact abelian Group, in particular a Lie group. A discussion of 
basic facts of Topological groups, Differentiable Manifolds and Lie groups 
are also included. 
Keywords: Haar measure, Topological group, Differentiable Manifold, 

Lie Group, Wavelets. 
 
1. Introduction 
 The classical Fourier theory is concerned with the study of the Fourier 
transform f̂ of a given function f : 
(1) ˆ ( ) ( )

 


  ixf f x e dx  
and its inversion problem i.e. studying conditions under which the following 
inversion relation holds: 
(2) ˆ( ) ( ) .




  i xf x f e dx  

The corresponding Foureir sereis theory is the investigation of the validity of 
the relation. 
(3) ˆ( ) ( ) inx

n Z
f x f n e


  

in various modes of convergence, where 
(4) ˆ ( ) ( ) .inxf n f x e dx

 


   
The infinite series 
(5) ˆ ( ) inx

n Z
f x e


 is called the Fourier series of f and the numbers ˆ ( )f x  are 

called the fourier coefficients of f. The Euler relation, cos sinixe x i x  , 
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shows that the Fourier sereis in (5) is infact a series in sine and cosine. In 
application, we usually have to approximate a function by its Fourier series, 

ˆ( ) ( ) inx
n

f x f x e

   
and thus have to compute the infinite integral 

ˆ ( ) ( ) .inxf n f x e dx
 


   
Except for very nice functions, this integral cannot be evaluated in closed 
form. 
Again we have to approximate this infinite integral on some suitable finite 
interval. It is therefore desirable that the integrand decays at infinity. 
The problem here is that sine and cosine functions do not decay at infinity i.e., 
| sin |, | cos | 0x x  as | |x  . They remain oscillatory on the whole real 
line. 
Wavelets are an attempt to replace sine and cosine functions with function 
having sufficient rate of decay at infinity. 
Wavelets (on ) were introduced in early nineteen eighties by Morlet, Arens, 
Fourgeau and Giard. Later the mathematical foundations of the wavelet theory 
was laid down by I. Daubechies and Y. Meyers [7]. This paper is an 
exposition of the extension of wavelet theory from R to topological groups. 
 
2. Fourier Analysis on Groups 
 In this section we briefly discuss Fourier Analysis on Groups. For 
details, we refer to [8]. 
 
2.1 Haar Measure 
2.1.1Definition. A topological group G is a group which is also a topological 
space such that the group operations 
 G × G  G 

~ 
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 (x, y)   xy, 
and  
 G  G 
 x   1x  
are continuous. 
A topological group G is locally compact if it is locally compact as a 
topological space. 
 
2.1.2 Proposition. Let G be a locally compact abelian group (LCA). Then 
there exists a non-negative regular and translation invariant Borel measure on 
G. This measure is called the Haar measure on G. [8]. 
Some function spaces of interest on G are as follows: 

- C(G) denotes the set of all continuous complex functions on G. 
- CC(G) denote the set of all continuous complex functions on G with 

compact support. 
- ( ),1   PL G p  the set of all Borelmeasurable functions on G such 

that 
1/

| |
p

P
G

f dx       
where dx is the Haar measure on G. 
 
2.2 The Dual Group and the Pontryagin Duality 
2.2.1  Definition. Let G be a LCA group. A complex function on G is called 
a character of G if for all x, y G, 
(i) | ( ) | 1x   
(ii) ( ) ( ) ( ).xy x y    
2.2.2  Remark. 
(1)  is a homomorphism of the group G and the multiplicative group S1 of 
the unit circle in . 
(2) The example of a character is the exponential map 
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  RS1 
  x .ixe  
 
2.2.3  Definition. Let  be the set of all continuous characters of G.  is a 
group with respect to the addition defined by 
 1 2 1 2( )( ) ( ) ( ),x x x      1 2( , , )x G      
(, +) is called the dual group of G. 
It is customary to write the “duality notation” (x, ) for (x). 
 
2.2.4 Theorem (The Pontryagin duality) 
 Let G be a LCA group and be its dual group. Let ̂ be the dual group 
of . Then ˆ .G   [8] 
 
2.3 The Fourier Transform on Locally Compact Abelian Group 
 Let G be a LCA group and be its dual group. Let 1( )f L G . A 
function f̂  defined on  by 

ˆ ( ) ( )( , )
G

f f x x dx   , ( )   

is called the Fourier transform of f. 
 This generalization of the classical Fourier transform on R to a LCA 
group G is only too natural, since R is also a LCA group. 
As may be expected the following classical results still hold: 
 

(1) ˆ ˆ( ) ( ) ( ) ( ) ,
G

f x g x dx f g d  


      (Parseval) 
(2) 2 2ˆ|| ||  || || ,f f    (Plancherel)  [8] 

 
 
2.4 Lie groups 

 
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 In doing Fourier Analysis especially wavelet Analysis, it is sometimes 
necessary to consider smooth functions also. 
 For this purpose we have to consider topological spaces which have 
also differentiable structure. 
 A differentiable manifold is a Hausdorff topological space X such 
that each point in X has a neighbourhood homeomorphic to an open set in Rn. 
 
2.4.1 Definition. A topological group G which is also a differentiable 
manifold such that the maps 
 G × G  G 
 (x, y)  xy and 
 G  G 
 x  1x   are smooth is called a Lie group. 
 For our purpose the following matrix Lie groups will suffice. 
Let k be the real field R or the complex field . 
Let Mn (k) be the set of all n × n matrices with entries from k. 
(1) The general linear group ( ) { ( ) : det 0}.n nGL k A M k A    
(2) The special linear group ( ) { ( ) : det 1}.n nSL k A GL k A    
(3) The orthogonal group ( ) { ( ) : }.T

n n nO k A GL k A A I    
Clearly ( ), ( )n nGL k SL k  and ( )nO k  are groups with respect to ordinary matrix 
multiplication. 
Each n × n matrix A can be identified as a point of 2nk . 
So ( ),  ( )n nGL k SL k  and ( )nO k  are also topological groups with the topology 
induced by 2nk . For details we refer to [1]. 
 
 
3. Wavelets 
3.1 Wavelets on  
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3.1.1 Definition. Let 2 ( )L  R  with sufficient rate of decay at infinity. 
Consider the family 

/2
, ( ) 2 (2 ),j j

j k x x k   ( , )j k  Z  
of translations and dialations of  . 
Suppose that ,{ }j k  forms an orthonormal basis for 2 ( )L R ; i.e., 
 , ,,j k l m    = , ,j l k m   
 f = , ,

,
, .j k j k

j k
f  


 

Z
 

Then   is called a mother wavelet and the system ,{ }j k  is called a wavelet 
basis. 
Example (1). The Haar function is a wavelet with compact support. 

11 0 ,2
1( ) 1 1,2

0                  

x
x x

     

 

 
Figure (1) 

Example (2).The Gaussian function is a smooth wavelet with fast rate of 
decay at infinity. 

2( ) xx e   

if 
if 
elsewhere 
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Figure (2) 

 
3.2 Group theoretical approach to wavelets. 
 We recall some concepts of group representations [9]. 
 
3.2.1 Definition.  Let G be a locally compact group. A unitary 
representation of G is a pair ( , )H  where H is a Hilbert space and  is a 
continuous homomorphism of G into the group U (H) of unitary operators on 
H that is the operations are continuous. 
 ( )xy  = ( ) ( ),x y   
 1( )x   = 1 *( ( )) ( ( ))x x      for , .x y G  
 
3.2.2The Affine Group 
Let G = {( , ) , 0}.  a b R R a  
Define the operation ( , ) ( , ) ( , ).ba b c d ac d c    
Then G is a group called the “Affine group” with 1 1( , ) ( , ).a b a ab    
For ( , )g a b G  , define 

11 1( )( ) ( ( ))| | | |g
x bT x g xaa a         

where 2 ( )L  R . 
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Then the mapping, 
  2: ( ( ))T G U L R  
  gg T is a unitary representation of G on 2 ( )L R , [11]. 
 
3.2.3  The continuous wavelet transform 
 Let 2 ( )L  R  be a wavelet. Then the mapping 

2 2: ( ) ( ) W L L R R R  defined by  
 ( )( )W f g  = ( )( )( )g

R
f x T x dx  

  = , gf T   
  = ,, a bf    
is called the continuous wavelet transform. 
The main purpose of wavelet Analysis is [like that of Fourier Analysis] to 
look for conditions such that the Calderonreproducing formula 

( )( ) ( ) ( )
G

W f g x d g f     

holds, where is the Haar measure on G [11]. 
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A STUDY ON FILTERS 
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Abstract 

In this paper, firstly the classification of filters is discussed. 
Topological space  plays a crucial role in this discussion. After that the 
relations between them are studied. Especially, the characterizations of 
ultrafilters are presented with detail proofs. Ultrafilter is a powerful tool 
both in set theory and in topology. Moreover, the comparisons of filters are 
expressed and some notions of filter basis and trace of filter are described. 
Finally, ultrafilter convergence theorem and convergence of Cauchy filter in 
topological vector space are investigated. 

 
1.  Some types of filters 
1.1  Definitions  

A collection  ℱ of subsets of a set X is called a filter on X if it satisfies 
the following axioms: 
(F1) If A⊂ X and A contains a set B ∈ ℱ, then A ∈ ℱ. 
(F2) The intersection of a finite collection of sets in  ℱ belongs to ℱ. 
(F3) The empty subset of X does not belong to ℱ. 
 First let us examine a few elementary consequences of this definition. 
It follows from (F1) that X is a member of any filter on X. 

Note that P(X) a collection of subsets of X is not a filter on X. 
However, it satisfies (F1) and (F2). Therefore it is sometimes called the 
improper filter on X. Conversely, if ℱ is a collection of subsets of X  
containing the empty set and satisfying (F1) and (F2), it follows from (F1) that 
ℱ = P(X), that is, ℱ is improper. 

Let X be a set and ࣛ ⊂ P(X) a collection of subsets. Then ࣛ has the 
finite intersection property (FIP) if any finite intersection of sets inࣛ is non-
empty.  (From the axioms (F2) and (F3) that a filter has  the FIP.)  

The cofinite filter on an infinite set X is the set of all subsets A of X 
such that the complement of A in X is  finite.  
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That is, ℱ = {A ⊆ X: X \ A is finite }. (or) 
 ℱ = {X \ A ∶ A ⊆ X  is finite }. 
This filter on X = ℕ, the set of natural numbers, is also called the 

Fréchet filteron ℕ. 
A maximal element of the set of all filters on X is called an ultrafilter 

on X.   
For any non-empty subset M of X, the set {A⊆X : M ⊆ A} is a filter 

on X, the principal filter generated  by M. 
For any a ∈ X the set { A⊆ X : a ∈ A } is the principal ultrafilter 

defined by a. 
Any ultrafilter that is not principal is called non-principal ultrafilter. 
A filter ℱ on X  isfree if the intersection of all sets in ℱ is empty.  

That is, ∩୅∈ℱ  A = ∅. 
Let X be a set and ࣛ ⊂ P(X) a collection of subsets. The (im)proper 

filter generated by ࣛ is the set 
<ऋ>=∩( { ℱ ⊂ P(X) :  ℱ ⊃ ࣛ and  ℱ is a(n) (im) proper filter on X}). 

So <ࣛ> is the intersection of all (im) proper filters on X that contains 
set  ࣛ . 
 
1.2  Example 

The set of all neighborhoods of a point x ∈ X is filter ℬ(x) called the 
neighborhood filter of x. 
 
2.Characterizations of the Ultrafilters 
2.1  Theorem (Ultrafilter lemma) 
 Let X be a set and suppose ࣛ ⊂ P(X) has FIP. Then there is an 
ultrafilter ࣯ on X which contains all of ࣛ. 
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Proof 
 Let the set ॐ consisting of all proper filters on X containing ࣛ, 
partially ordered by set inclusion. Then ॐ is non-empty because < ࣛ>∈ ॐ. 
Let ࣝ be a chain in ॐ. 
 We will prove ∪ ࣝ ∈ ॐ. For (F3), since any element of ࣝ does not 
contain empty set, ∅ ∉∪ ࣝ.For (F2), if A, B∈ ∪ ࣝ, then there are  
C, D ∈ ࣝ such that A∈ C and B∈ D. Since ࣝ is a chain, we have C ⊂  ܦ
without loss of generality. Consequently, A, B are elements of D and since D 
is a filter A∩ B ∈ D∈ ∪  ࣝ. For (F1), it is a trivial matter to verify that ∪ ࣝ is 
closed under supersets, so we have ∪ ࣝ ∈ ॐ indeed. This union is an upper 
bound of ࣝ in ॐ. According to Zorn's lemma, ॐ has  maximal elements. Let 
࣯ be a maximal element of ॐ. If  ℱ ⊃ ࣯ is a filter, then ࣛ ⊂ ℱ.By the 
maximality of ࣯, ℱ ⊂ ࣯ and we have ࣯ = ℱ.So ࣯ is an ultrafilter and it 
contains all of ࣛ. 
 
2.2   Lemma 
 Let Aଵ,   Aଶ, …, A୬ ∈ P(X) such that Aଵ ∪ Aଶ ∪… ∪ A୬ ∈ ࣯ 
where࣯ is an ultrafilter on X. Then  A୧ ∈ ࣯ for at least one i. In addition, if 
the sets are mutually disjoint, then A୧ ∈ ࣯ for exactly one i. 
Proof 
  Let  Aଵ ∪ Aଶ ∈ ࣯. Suppose (to the contrary) that neither Aଵ ∈ ࣯ nor 
Aଶ ∈ ࣯. Consider ℳ = {Z ∈ P(X) :Aଵ ∪  Z ∈ ࣯ }. 
 First we need to show that ℳ is a filter on X.For (F3), if ∅ is a 
member of  ℳ, then  Aଵ  = Aଵ ∪ ∅ ∈ ࣯, contradiction. So ∅ ∉ ℳ. 
 For (F2), if Bଵ ,Bଶ ∈ ℳ, then  Aଵ ∪ Bଵ ∈ ࣯ and  Aଵ ∪ Bଶ ∈ ࣯. 
Now (Aଵ ∪ Bଵ ) ∩ ( Aଵ ∪ Bଶ ) ∈ ࣯ because  ࣯ is a filter.That is,                
 Aଵ ∪ ( Bଵ ∩ Bଶ ) ∈ ࣯.It follows thatBଵ ∩ Bଶ ∈ ℳ. 
 For (F1), let V∈ P(X), U ⊂ V and U ∈ ℳ. Then Aଵ ∪ U ∈ ࣯. 
Since U ⊂ V, Aଵ ∪  U ⊂ Aଵ ∪  V.Thus  Aଵ ∪  V ∈ ࣯ because ࣯ is a filter. 
So V ∈ ℳ. 
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 Therefore  ℳ is a filter on X.Moreover, we have ࣯ ⊆ ℳ. 
Also, ࣯ ⊊ ℳbecause ܣଶ ∈ ℳ\࣯, contradicting the maximality of ࣯.Our 
assumption is false, so  A୧ ∈ ࣯ for at least one i.Finally, if Aଵ ∩ Aଶ =  ∅ and 
Aଵ, Aଶ ∈ ࣯ then this implies that ∅ ∈ ࣯, a contradiction.The generalization to 
n≥2 follows by induction. 
 
2.3   Theorem 
 Let ℱ be a filter on X. Then ℱ is an ultrafilter if and only if for every 
A ⊂ X either A ∈ ℱor X \ A ∈ ℱ. 
Proof 
 Suppose ℱ is an ultrafilter.Let A ∈ P(X).The previous lemma holds 
since A ∪ (X \ A) = X ∈ ℱ and A ∩( X \ A ) =  ∅. 
 Conversely, suppose (to the contrary)that  ℱ is not an ultrafilter. Then 
there exists a filter ℳ such that ℱ ⊊ ℳ and take A ∈ ℳ \ ℱ. 
 Thus A ∈ ℳ  and A∉ ℱ. So  X \ A ∈ ℱ by given condition. 
 Since ℱ ⊂ ℳ, then this implies that both A and X \ A are in ℳ. 
Hence A ∩( X \ A ) =  ∅ ∈ ℳ, contradicting the fact that ℳ is a filter. 
 
2.4   Remark 
 If ࣯ is an ultrafilter on X, and A∈ ࣯, then ࣯ contains all sets B with A 
⊂ B ⊂ X. Indeed, if we start with such a B, then by the above result, either  B 
∈ ࣯ or X \ B ∈ ࣯.If X \ B ∈ ࣯, then A ∩ ( X \ B ) =  ∅ ∈ ࣯, contradiction. 
Therefore B must belong to ࣯. 
 
2.5   Corollary 
 The Fréchet filter ℱon an infinite setℕ is not an ultrafilter. 
Proof 
 Let ॱ and  ॹ denote the sets of the even and odd numbers in ℕ 
respectively.We known that ॱ ∩ ॹ =  ∅ andॱ ∪ ॹ = ℕ ∈ ℱ, but neither ॱ 
nor ॹ belongs to ℱ because any set in ℱhas finite complement. 
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3. Types of Ultrafilters 
 There are two very different types of ultrafilters such as principal and 
non-principal (free). 
  
3.1  Proposition 
 Any ultrafilter over a finite set is principal. 
Proof 
 Let X be a finite set, ࣯ be an ultrafilter over P(X) and  
࣯ = {ܵଵ , ܵଶ , … , ܵ௞}.Since ∅ ∉ ࣯ and ௜ܵ ∩ ௝ܵ ∈ ࣯ for every i, j,  
ܵଵ ∩ ܵଶ ∩ … ∩ ܵ௞ ≠ ∅. If a ∈∩௜ ୀଵ௞ ௜ܵ, then a ∈ ࣯.But by the definition of 
principal ultrafilter{ S : a ∈ S} ⊂ ࣯.By the maximality of ultrafilter,           
࣯ ={S: a∈ S}. 
(or) 
 Let A be a finite set. Then either some a ∈ A satisfies {a} is  in the 
ultrafilter, in which case it is principal; or else X \ {a} is in the ultrafilter for 
all a∈ A, so the finite intersection  
 A ∩( ∩a∈A (X \ {a})= A ∩( X \  ∪a∈A {a} )= A ∩ (X \ A) = ∅ 
is also in the ultrafilter. 
 So a non-principal ultrafilter must contain only infinite sets. In 
particular, if X is finite, then every ultrafilter on X is principal. 
 
3.2   Proposition 
 Cofinite filter is intersection of all non-principal ultrafilters. 
Proof 
 Let X be an infinite set. 
 Suppose that a set A⊆ X; we want to show that A is cofinite. 
Suppose for contradiction that A is not cofinite. That is, the set D= X \ A is 
infinite. From Proposition 3.1, the infinite set D belongs to some non-principal 
ultrafilter ࣯ on X. But ࣯ is a non-principal ultrafilter on X which does not 
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contain A, contradicting our assumption that A belongs to every non-principal 
ultrafilter. 
 Let ℱ ={B⊆ X: X \ B is finite}, the cofinite filter on X. Then the 
collection {D} ∪ ℱ has the FIP, whence {D}  ∪ ℱ ⊂ ࣯ for some ultrafilter ࣯. 
Since ࣯ contains  ℱ, it is non-principal. 
 
3.3   Corollary 
 A non-principal ultrafilter is free. 
Proof 
 If there exists x∈∩A∈ℱA, then X \ {x} is not an element of ℱ, by 
Theorem 2.3, {x} ∈ ℱand ℱ is  a principal ultrafilter. 
 
3.4   Proposition 
 Every non-principal ultrafilter on an infinite set X contains the cofinite 
filter on X. 
Proof 
 Let ࣯ be a non-principal ultrafilter on X  and  let x ∈ X be arbitrary. 
Since ࣯is an ultrafilter, exactly one of the sets {x} and X \ {x} belongs to ࣯, 
and since ࣯ is non-principal, {x}∉ ࣯. Thus, X\{x}∈ ࣯ for each  
x ∈X. Now let F be any finite subset of X; then  
 X \ F = X \ ∪x∈F {x}=∩x∈ℱ (X \ {x})∈ ࣯. 
 That is, X \ F ∈ ࣯. We have {X \ F: F ⊆ X is finite} is the cofinite 
filter on X. 
 Therefore  ࣯ contains the cofinite filter. 
 
3.5   Proposition 
 An ultrafilter on X is free if and only if it contains the Fréchet filter on 
X.  
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Proof 
 In the previous proposition we proved that every free ultrafilter on X 
contains the Fréchet filter on X.  For the converse, suppose that ࣯ is a fixed  
(principal) ultrafilter on X; then there is an x∈ X such that {x} ∈ ࣯. 

But X \ {x} is an element of the Fréchet filter that is not in  ࣯, so ࣯ 
does not contain the Fre'chet filter.  
 
4. Ultrafilter Convergence Theorem 
4.1   Definition 
 A filter ℱ on a topological space Y converges to a point y ∈ Y or y is 
a limit of ℱ if for all open sets U containing y, U ∈ ℱ. 
 
4.2   Theorem 
 Let Y be a topological space. 
1. Y is Hausdorff if and only if every ultrafilter ℱ on Y converges to at most 

one point. 
2. Y is compact if and only if every ultrafilter ℱ on Y converges to at least 

one point. 
Proof 
1. Suppose (to the contrary) that Y is Hausdorff, but x ≠ y are limit 
points of ℱ.  
 Since Y is Hausdorff, there exist disjoint open sets x ∈ U and 
 y ∈V .By the definition of limit point, U, V ∈ ℱ but U ∩ V= ∅, 
contradiction. 
 Conversely, suppose that Y is not Hausdorff. Then there are points          
x ≠ y such that every open neighborhood of x intersects every open 
neighborhood of y. 
Then {U :  x ∈ U open} ∪ { V : y ∈ V open } has the FIP. Let ℱ be an 
ultrafilter containing it. So x and y are both limit points of ℱ. 
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2. Suppose to the contrary that Y is compact, but ℱ has no limit points. 
Then for all y ∈ Y, there is an open set U୷containing y such that  U୷ ∉ ℱ. So 
Y =∪୷∈ ଢ଼ U୷ and by compactness, Y=∪௜ୀଵ௡ U୷౟. But Y∈ ℱ, so some U୷౟ ∈ ℱ, 
contradiction. 
 Conversely, suppose that Y is not compact. Then there is an open 
cover Y=∪୷∈ ଢ଼ U୷with no finite subcover. So ∩୧ (Y \ U୧)  = ∅, but no finite 
intersection is empty. Then {( Y \ U୧) }୧has the FIP, so we can take an 
ultrafilter ℱ containing it. Now for any point y ∈ Y, y is contained in some U୧, and U୧ ∉ ℱ, since( Y \ U୧)  ∈  ℱ. So y is not a limit point of  ℱ. 
 
5.Comparison of filters on a set X 
5.1  Definition 
 Let ℱ1, ℱ2 be two filters defined on a set X. We say that ℱ1is finer 
than ℱ2(or that ℱ2is coarser than ℱ1) if ℱ2 ⊂ ℱ1. 
 
5.2  Proposition 
 Let (ℱi)i∈I be a family of filters on a set X. Then ℱ =∩i∈I ℱi is a filter  
on X and has the following properties. 
(a) ℱ is coarser than ℱi(i ∈ I). 
(b) If ℱ ′is a filter coarser than everyℱi(i ∈ I) thenℱ ′ ⊂  ℱ. 
Proof 
 For (F1), let A⊂X, B⊂A and B∈ ℱ. It follows that B ∈ ℱi for every i∈
I. 
 Since ℱi is a filter and B⊂A, A∈ ℱi for every i ∈ I. 
 Thus A ∈∩i∈I ℱi = ℱ. 
 For (F2), let A1 , A2 , … , An ∈ ℱ. For each j, Aj ∈∩i∈I ℱi and Aj ∈ ℱi 
for every i ∈ I.Since ℱi is a filter (i ∈ I), ∩௝ୀ1௡ jܣ ∈  ℱi(i ∈ I).So ∩௝ୀ1௡ jܣ ∈
∩i∈I ℱi = ℱ. 
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 For (F3), for each i, ℱi does not contain empty set, ∅ ∉∩i∈I ℱi. Therefore ℱ is a filter. Since ℱ = ∩i∈I ℱi, ℱ ⊂ ℱi(i ∈ I).That is, ℱ is coarser 
than ℱi(i ∈ I). 
(a) Let ℱ ′ be a filter coarser that ℱi(i ∈ I). That is, ℱ ′ ⊂ ℱi(i ∈ I). 
 Thus  ℱ ′ ⊂∩i∈I ℱi = ℱ. 
 
5.3  Definition 
 Let (ℱi)i∈I be a family of filters ℱidefined on set X. If there exists a 
filter ℱ on X such that  
(glb1)ℱ is coarser than every ℱi(i ∈ I). 
(glb2) If ℱ ′ is a filter on X such that ℱ ′is coarser than every ℱi(i ∈ I), then 
ℱ ′ ⊂ ℱ.Then ℱ is called the greatest lower bound of the family ( ℱi)i∈I. Proposition (5.2) implies the greatest lower bound of a family (ℱi)i∈I of filters 
ℱi on X always exists. 
 
5.4   Definition 
 Let (ℱi)i∈I be a family of filters ℱi on X. If there exists a filter ℱത on X 
such that  
(lub1) ℱത is finer than every ℱi(i ∈ I). 
(lub2) If ℱത ′ is a filter on X such that ℱത ′is finer than every ℱi, i ∈ I,  
 then  ℱതis called the least upper bound of ( ℱi)i∈I. 
 
5.5   Proposition 
 Let (ℱi)i∈I be a family of filters on a set X. Then this family has a least 
upper bound in the set of all filters on X if and only if there exists a filter on X 
which is finer than every ℱi for i ∈ I. 
Proof (Necessary condition) 
 Assume that the least upper bound ℱത exists.(lub 1) implies ℱത is finer 
than every ℱi for i ∈ I. 
(Sufficient condition) 
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Assume that there exists a filter ℱon X which is finer than ℱi (i ∈ I).Let Φ be 
the set of all filters which are finer than ℱi (i ∈ I).Then ℱ ∈ Φ and so Φ is 
non-empty.Let ℱത be the greatest lower bound of Φ.We prove that ℱത is least 
upper bound of ℱi (i ∈ I). 
 Let ℱj ∈( ℱi)i∈I. Since ℱത is the greatest lower bound ofℱi (i ∈ I), ℱj ⊂
 ℱത . 
 That is, ℱത is finer than every ℱi (i ∈ I).Put g ∈ Φ. Then g is finer than 
every ℱi.Thusevery ℱi is coarser than g of Φ. Hence  ℱi ⊂ ℱത. 
 Let ℱ ′ be a filter on X such thatℱ ′ is finer than every ℱi (i ∈ I). 
 Then ℱ ′ ∈ Φ. Since ℱത be the greatest lower bound of Φ and ℱ ′ ∈ Φ, 
(glb1) implies ℱത ⊂ ℱ ′.Therefore ℱത is the least upper bound of ( ℱi)i∈I.  
6. Some Notions of Filter Basis and Trace of Filter 
6.1  Definition 
 A collection ी of subsets of X is a filter basis if it satisfies the 
following two conditions: 
(FB1)  The intersection of two sets in ी contains a set of ी. 
(FB2) ी is non-empty and the empty subset of X does not belongs to ी. 
 
6.2  Definition 
 Let f: X⟶Y be a mapping from a set X into a set Y. Let ी be a filter 
basis on Y.Define  fି1(ी)={ fି1( A): A ∈ ी }. 
 
6.3  Proposition 
 Let ी be a filter basis on Y and f: X⟶Ybe a mapping. Then  fି1(ी) is 
a filter basis on X if and only if  fି1(A) ≠ ∅ for every A ∈ ी. 
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Proof 
 Assume that  fି1(ी) is a filter basis on X. (FB2) implies  fି1(ी) is 
non-empty and empty subset of X does not belong to fି1(ी). For each A ∈
ी, fି1( A) ∈  fି1(ी).  
 So  fି1( A) ≠ ∅. 
 Conversely, assume that  fି1(A) ≠ ∅ for every A ∈ ी. Since ी is a 
filter basis, ी ≠ ∅ and empty subset of Y does not belong to ी. If A ∈ ी, 
then A≠ ∅. 
 Moreover, fି1( A) ≠ ∅ for every A ∈ ी.Therefore the empty subset of 
X does not belong to  fି1(ी). Take ܼ1 ,ܼ2 ∈  fି1(ी).Then there  
exist A1,A2 ∈ ी such that ܼ1 =  fି1(A1 ) andܼ2 =  fି1(A2 ). If A1,A2 ∈ ी,  
then there existsA3 ∈ ीsuch thatA3 ⊂ A1 ∩ A2. It follows that            
 fି1(A3 )⊂ fି1(A1 ∩ A2)=  fି1(A1 ) ∩  fି1(A2 ) = Z1 ∩ Z2.Therefore fି1(ी)is 
a filter basis on X, if  fି1(A) ≠ ∅ for every A∈ ी. 
 
6.4   Definition 
 Let A be a non-empty subset of a set X and ℱ a filter on X. Then the 
trace of ℱon A is defined and denoted by ℱA = {A∩B: B∈ ℱ}. 
 
6.5   Proposition 
 If ी is a filter basis on X, then the trace ीA = {A∩B: B∈ ी} is a filter 
basis on A if and only ifA∩B≠ ∅ for every B∈ ी. 
Proof 
 Let f:A→X be the canonical injection of A into X defined by f(x) = x. 
 Let B ∈ ी. 

 fି1(B) = {x ∈ A:f(x)∈ {ܤ = {x ∈ A: x∈ {ܤ = A∩B. 
 fି1(ी) = { fି1(B): B ∈ ी} = {A ∩ B: B∈ ी} = ीA . 
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 Proposition 6.3 implies fି1(ी) is a filter basis if and only if                  
 fି1(B) ≠ ∅ for every  B ∈ ी. Therefore ीA is a filter basis if and only if A ∩
B ≠ ∅ for every B ∈ ी. 
 
7. Convergence of Cauchy Filter 
7.1  Definition 
 Let X be a topological space and ी a filter basis on X. A point x of               
X is said to adhere to ी if x adheres to every set A in ी. 
 
7.2  Definition 
 Let E be a topological vector space and A⊂E. A filter ℱon A is said to 
be a Cauchy filter if for every neighborhood of zero V, there exists a set                 
X ∈ ℱ such that X−X⊂V. 
 
7.3  Proposition 
 Suppose that ℱis a filter on a set A of a topological vector space E and 
thatℱ converges to a point x∈ E.Then ℱis a Cauchy filter on A. 
Proof 
 Assume that ℱ on A converges to x ∈ E. Let V be neighborhood of 
zero in E.Then there exists a balanced neighborhood U of zero such that 
U+ U ⊂ V. Since ℱconverges to x, ℬ(x) ⊂ ℱ. Thus x + U ∈ ℬ(x) ⊂ ℱ. Then 
there exists X ∈ ℱ such that X ⊂x + U. 
 Let z ∈ X−X. Then there exists y, w ∈ X such that z = y – w.Since y, 
w ∈ X and X ⊂ x + U, y – x and w – x ∈ U.Since U is balanced, w– x ∈ U 
implies  x– w ∈ U. 
 Thus (y – x) +(x– w) ∈ U + U ⊂ V. So z = y – w ∈V, for every z∈ 
X–X.Hence X–X ⊂ V.Therefore ℱ is a Cauchy filter. 
7.4   Proposition  
 If the point x adheres to the Cauchy filter ℱon a set A of topological 
vector space E, then ℱconverges to x. 
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Proof 
 Let ℱ be a Cauchy filter on A and x adheres to ℱ. 
 Take W ∈ ℬ(x), whereℬ(x) is the set of neighborhood of x. 
 Hence there exists a neighborhood V of zero such that x +V ⊂ W. 

Therefore there exists a neighborhood U of zero such that U+U ⊂V. 
Since ℱis Cauchy filter, there exists X ∈ ℱ such that X–X ⊂U. x∈ Xഥsince x 
adheres to X and x + U is a neighborhood of x and hence 
 (x+ U) ∩ X≠ ∅. 

Take y ∈ (x + U) ∩X .Then y ∈ x + U and y ∈ X. 
Let z ∈ X. Then z –y ∈ X–X ⊂U.So z ∈ y+ U ⊂ x + U +U⊂ x + V⊂ W. 
Hence X ⊂ W.Since X ∈  ℱ and X ⊂W, W∈ ℱ and ℬ(x) ⊂  ℱ. 
Therefore ℱ converges to x. 
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COMPARISON OF SIMPLE ACCELERATION METHOD 
AND CONWAY'S METHOD 

 Li Li Than* 
 Abstract 

  Congruence can be used to determine on which day of the week a 
given date falls. We discuss the calendar formula to calculate the day of the 
week of December 25, 2017. Also, we express easier formula to calculate. 
And then, we describe Conway's Doomsday Algorithm. The Doomsday 
Algorithm is an Algorithm for calculating the day of the week for any given 
calendar date. The algorithm is based on first computing doomsday which is 
the day of the week of the last day of February, or of January. We present 
an acceleration method for calculating the dooms year term of the 
Doomsday algorithm. Finally, we show that simple acceleration method is 
similar in form to Conway's lookup table acceleration method. 

1. Definitionsm 
A year is the amount of time it takes the Earth to make one complete 

orbit around the Sun. 
A day is the amount of time it takes the Earth to make a complete 

rotation about the axis through its north and south poles. 
A year is approximately 365.2422 days long. In 46 B.C., Julius Caesar 

(and its scientific advisors) compensated for this by creating the Julian 
calendar, containing a leap year every 4 years; that is, every fourth year has 
an extra day, namely, February 29, and so it contains 366 days. A common 
year is a year that is not a leap year. 
This would be fine if the year were exactly 365.25 days long, but it has the 
fact of making the year 365.25 364.2422 = .0078 (about 11 minutes 14 
seconds) days too long. After 128 years, a full day was added to the calendar, 
that is, the Julian calendar  over counted the number of days. 

Let us now seek a calendar formula. For easier calculation, we choose 
0000 as our reference year, even though there was no year! Assign a number 
to each day of the week, according to the following scheme: 

Sun  Mon Tues Wed Thurs Fri Sat 
0 1 2 3 4 5 6 
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In particular, March 1, 0000, has some number a , where 0 a 6 . In 
the next year, 0001, March 1 has number a 1(mod 7), for 365 days have 
elapsed from March 1, 0000, to March 1, 0001, and 

365 527 11 mod7. 
Similarly, March 1, 0002, has number a 2, and March 1, 0003, has number a 
3. However, March 1, 0004, has number a 5 , for February 29, 0004, fell 
between March 1, 0003, and March 1, 0004, and so 366 2mod7 days had 
elapsed since the previous March 1. We see, therefore, that every common 
year adds 1 to the previous number for March 1, while each leap year adds 2. 
Thus, if March 1, 0000, has number a, then the number aof March 1, year y, 
is  

aa y Lmod7, 
[For 0000, 365  amod 7, 
for 0001,  2 365  a +1mod 7, 
for 0002, 3 365 a + 2mod 7, 
for 0003, 4  365  a + 3mod 7, 
for 0004, 4 365 a + 4+1mod 7] 

where L is the number of leap years from year 0000 to year y. To compute L, 
count all those years divisible by 4, then throw away all the century years, and 
then put back those back century years that are leap years. Thus, 
                        L ,y 4 y 100 y 400              
where xdenotes the greatest integer in x. 

For 1 year, L = 0, 
for 2 years, L = 0, 
for 3 years, L = 0, 
for 4 years, L = 1, 
and so on for 100 years , L = 24 = 100/ 4 -100/100, 
for 400 years, L = 97 = 400/4 -400/100+400/400. 

Therefore, we have 

 
a a y L

a y mod 7.y 4 y 100 y 400
   
                
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We can actually find aby looking at a calendar. Since March 2, 1994, fell on 
a Tuesday, 

2 a 1994 1994 4 1994 100 1994 400
a 1994 498 19 4 mod 7,

              
      

and so 
a 2475 4 3mod7 

(that is, March 1, year 0000, fell on Wednesday). One can now determine the 
day of the week on which March 1 will fall in any year y > 0, namely, the day 
corresponding  to 

3 y mod 7.y 4 y 100 y 400               
There is a reason we have been discussing March 1. 

Let us now analyze February 28. For example, suppose that February 
28, 1600, has number b. As 1600 is a leap year, February 29, 1600, occurs 
between February 28,1600, and February 28, 1601; hence 366 days have 
elapsed between these two February 28's, so that February 28, 1601, has 
number b+2. February 28, 1602, has number b+3, February 28, 1603, has 
number b+4, February 28, 1604, has number b+5, but February 28, 1605, has 
number b+7 (for there was a February 29 in 1604). 

Let us compare the pattern of behavior of February 28, 1600, namely, 
b, b+2, b+3, b+4, b+5, b+7, ...., with that of some date in 1599. If May 26, 
1599, has the number c, then May 26, 1600, has the number c+2, for February 
29, 1600, comes between these two May 26's, and so there are 366 2mod7 
intervening days. The numbers of the next few May 26's, beginning with May 
26, 1601, are c, c + 2, c + 3, c + 4, c + 5, c +7. We see that the pattern of the 
days for February 28, starting in 1600, is exactly the same as the pattern of the 
days for May 26, starting in 1599; indeed, the same is true for any date in 
January or February. Thus, the pattern of the days for any date in January or 
February of a year y is the same as the pattern for a date occurring in the 
preceding year y 1: a year preceding a leap year adds 2 to the number for 
such a date, whereas all other years add 1. Therefore, 
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February 28, 1600, has number b, 
February 28, 1601, has number b + 2, (since 1600 is a leap year) 
February 28, 1602, has number b + 3, 
February 28, 1603, has number b + 4, 
February 28, 1604, has number b + 5, 
February 28, 1605, has number b+ 7, (since 1604 is a leap year) 
So, it has the pattern: b, b+2, b+3, b+4, b+5, b+7,..., 
May 26, 1599, has the number c, 
May 26, 1600, has the number c + 2, (for February 29, 1600) 
May 26, 1601, has the number c + 3, 
May 26, 1602, has the number c + 4, 
May 26, 1603, has the number c + 5, 
May 26, 1604, has the number c + 7, 

so it has the pattern: 
c, c + 2, c + 3, c + 4, c + 5, c +7. 

Now we find the day corresponding to a date other than March 1. Since March 
1,0000, has number 3, April 1, 0000, has number 6, for March has 31 days 
and 3316mod7. Since April has 30 days, May 1, 0000, has number          
630 1mod7. Thus, the following table gives the number of the first day of 
each month in year 0000: 
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March 1,0000, has number 3 
April 1 6 
May 1 1 
June 1 4 
July 1 6 
August 1 2 
September 1 5 
October 1 0 
November 1 3 
December 1 5 
January 1 1 
February 1 4 

We are pretending that March is month 1, April month 2, etc. Let us 
denote these  numbers by 1j(m) , where j(m), for m1,2, ....,12, is defined by 

j(m) : 2,5,0,3,5,1,4,6,2,4,0,3. 

     

day j(m) year
For March1, 0000 has number 1 2 0 3
For March1, 0001 has number 1 2 1 4
For March1, 0002 has number 1 2 2 5
For March1, 0003 has number 1 2 3 6
For March1, 0004 has number 1 2 4 1 8 1 mod7

1 2 4 1 mod74/4 4/100 4/ 400

For

  
  
  
  
    
     



month m, day d, and year y, d j(m) g(y) mod 7
where g(y) y .y/ 4 y/100 y/ 400

 
             

 

 

2. Calendar Formula and Its Application 
Proposition 2.1. (Calendar Formula). The date with month m, day d, year y 
has number 

d j(m) g(y) mod 7 , 
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where 
j(m) 2,5,0,3,5,1,4,6,2,4,0,3, 

(March corresponds to m =1, April to m = 2, , February to m =12 ) and 
  g(y) y ,y / 4 y /100 y / 400               
provided that dates in January and February are treated as having occurred in 
the previous year. 
Proof. The number mod 7 corresponding to month m, day 1, year y, is 
1j(m) g(y). It follows that 2j(m) g(y) corresponds to moth m, day 2, 
year y, and, more generally, that d j(m) g(y) corresponds to month m, day 
d, year y. 
Example 2.2. Let us use the calendar formula to find the day of the week on 
which December 25, 2017, fell. Here m4,d 25,and y 2017. Substituting 
in the formula, we obtain the number  
25420172017/ 42017/1002017/ 4002535 1mod7, 
therefore, December 25, 2017, fell on a Monday. 
Most of us need paper and pencil (or calculator) to use the calendar formula in 
the proposition. Now we use some ways to calculation. 
One mnemonic for j(m) is given by 

j(m) 2.6m0.2, where 1m12. 
In above example, we also obtain the number 

     1 2017 2535 1mod7(2.6)10 0 2 2017/4 2017/100 2017/400           
where m 10. 
Another mnemonic for j(m) is in the sentence: 
My Uncle Charles has eaten a cold supper; he eats nothing hot. 
2 5 (7 0)  3 5 1 4 6 2 4 (7 0)  3 
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2.3 Corollary. The date with month m, day d, year y 100CN, where          
0 N 99, has the number 

d j(m) NN/ 4C/ 42C mod 7, 
provided that dates in January and February are treated as having occurred in 
the previous year. 
Proof. If we write a year y 100CN, where 0 N 99, then 

y 100CN 2CN mod7, 
   25C 4C mod7,y / 4 N / 4 N/ 4       

 C, and .y /100 y / 400 C/ 4         
Therefore, 

   
   

y 2C N 4C C mod 7y / 4 y /100 y / 400 N / 4 C / 4
N 2C mod 7.N / 4 C / 4

                  
     

This formula is simpler than the first one. For example, the number 
corresponding to  December 25, 2017, is now obtained as 

2541717/ 420/ 42(20) 15 1 mod 7. 
Now I find the day of my birthday. 
ExampleMy birthday date is June 27, 1973. On what day of the week 
was I born? 
If A is the number of the day, then 

A 2737373/ 419/ 42(19) 87 3 mod 7. 
I was born on a Wednesday. 
3. Conway's Calendar Formula 

John Horton Conway has found an even simpler calendar formula. In 
his system, he calls doomsday of a year that day of the week on which the last 
day of February occurs. For example, doomsday 1900, corresponding to 
February 28, 1900(1900 is not a leap year), is Wednesday = 3, while 
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doomsday 2000, corresponding to February 29, 2000, is Tuesday = 2, as we 
know from Corollary 2.3. 

Knowing the doomsday of a century year 100C, we can find the 
doomsday of any other year y = 100C N in that century, as follows. Since 
100C is a century year, the number of leap years from 100C to y does not 
involve the Gregorian alteration. Thus, if D is doomsday 100C (of course, 0 
D6), then doomsday 100C N is congruent to 

DNN/ 4mod7. 
For example, since doomsday 1900 is Wednesday = 3, we see that doomsday 
1994 is Monday =1, for 

3 94 23 = 120 1 mod7. 
3.1 Proposition. (Conway's  Formula). Let D be doomsday 100C, and let 0 
N99.  If N =12q r, where 0 r < 12, then the formula for doomsday 
100C N is 

Dq r r / 4mod7. 
Proof. 

 Doomsday (100C+ N) D + N + N / 4
D 12q r + (12q r) / 4
D 15q r + r / 4
D q r + mod 7r / 4


     
     
       

For example, 94 =127 10, so that doomsday 1994 is 3 7 10 2 1 
mod 7;  that is, doomsday 1994 is Monday, as we saw above. 

We know doomsday of a particular year, we can use various tricks 
(e.g., my Uncle Charles) to pass from doomsday to any other day in the year. 
Conway observes that some other dates falling on the same day of the week as 
the doomsday are   

April 4, June 6, August 8, October 10, December 12, 
May 9, July 11, September 5, and November 7; 
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it is easier to remember these dates using the notation 
4/4, 6/6, 8/8, 10/10, 12/12, and 5/9, 7/11, 9/5, and 11/7, 

where m/d denotes month/day (we now return to the usual counting having 
January as the first month :1 = January). Since doomsday corresponds to the 
last day of February, we are now within a few weeks of any date in the 
calendar, and we can easily interpolate to find the desired day. 
4.  The Doomsday Algorithmas a poem 
John Conway introduced the Doomsday Algorithm with the following rhyme: 

(1) The last of February or of January will do 
(2) (Except that in Leap Years it's January 32). 
(3) Then for even months use the month's own day, 
(4) And for odd ones add 4, or take it away. 
 
(5) Now to work out your doomsday the orthodox way 
(6) Three things you should add to the century day 
(7) Dozens, remainder, and fours in the latter, 
(8) (If you alter by sevens of course it won't matter) 
 
 (9) In Julian times, lackaday, lackaday 
(10) Zero was Sunday, centuries fell back a day 
(11) But Gregorian 4 hundreds are always Tues. 
(12) And now centuries extra take us back twos. 
(13) According to length or simply remember, 
(14) you only subtract for September, or November. 
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4.1  The Doomsday 
In other words here is a simple trick that we can use to determine the 

day of the week for any date of the current year. The day of the week on 
which the last day of February falls is called the doomsday. For non-leap 
years (or common years), this date is February 28; for leap years, it is 
February 29. Since 2017 is a common year, the current doomsday is the day of 
the week on which February 28, 2017 occurred; a Tuesday. Everything else 
that we need follows from one simple lemma: 
4.2 Lemma 

Adding or subtracting any integer multiple of 7 to any date leaves the 
day of the week unchanged. For example, February 7, 14, 21, and 28 all fall 
on the same day of the week. Likewise, adding x days is equivalent to adding 
x – 7 days, which is equivalent to subtracting 7– x days. For example, with     
x = 6, the day of the week that falls 6 days after Monday, is the same as the 
one that is 7– 6 = 1 day before. 
4.3 The rule of January 

We now use the Lemma 4.2 to identify at least one date in every other 
month that falls on the same day of the week as the doomsday. We begin with 
the rule of January. In a common year (like 2013) February has 28 days. By 
applying the above lemma, we subtract 4 7 = 28 days from February 28 to 
arrive at February 0, which must also fall on the doomsday. But February 0 is 
just another name for January 31 as both dates immediately precede February 
1. Thus in a common year, January 31 is the doomsday. In leap years, the 
doomsday is February 29. Again subtracting 28, a multiple of 7, yields 
February 29 – 28 = February 1. Thus in a leap year, February 1 falls on the 
doomsday. With a touch of whimsey, this date is also called "January 32", as 
both dates immediately follow January 31. Thus in leap years January 32 is 
the doomsday. Alternatively, observe that 

31 – 28 = 3, and 32 – 28 = 4. 
Thus January 3 always falls on the same day of the week as January 

31; as January 4 does for February 1. Consequently, for common years (which 
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come in groups of 3), the doomsday is January 3; and for leap years (which 
come once every 4 years) the doomsday is January 4. 
4.4  The rule of March 

Since the doomsday immediately precedes March 1(for both leap years 
and non-leap years), we call the last day of February "March 0". Thus, for 
every year, March 0 is the doomsday. If we insist on using an actual date in 
March, Lemma 4.2 implies that March 7, 14, 21, and 28 any multiple of 7) are 
all doomsdays. 
4.5  The rule of even months  
       The third line of Conway’s rhyme expresses the rule of even months. 
Thus for April, the fourth month, the doomsday is on 4/4. For June it is 6/6; 
August, 8/8; October 10/10; and December, 12/12. The answer follows from 
Lemma 4.2 and an interesting pattern within the seemingly irregular 
distribution 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
31 28 31 30 31 30 31 31 30 31 30 31 29 

 Conway observed that when eight of the months are paired as shown 
(April with May, June with July, August with September, and October with 
November), then together each pair contains exactly 30 + 31 =61 days. Since 
adding 2 to 61 produces a multiple of 7, every doomsday in June occurs two 
dates after the corresponding doomsdays in April. Likewise every doomsday 
in August occurs two dates after a doomsday in June; etc. So all we need to do 
is identify one doomsday in April the remainder of even months will fall like 
dominoes. Using Lemma 4.2 with the rule of March we learn that March 35 is 
a doomsday.  

To convert March 35, we carry (just like in ordinary arithmetic) 31 
days (the number of days in March) from the date column, and advance the 
month. Thus, 

March 35=April(35−31)=April 4. 
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Likewise doomsdays fall on June 4+2=6, August 6+2=8, October 8 + 2 = 10, 
and December 10 + 2 = 12, demonstrating the rule of even months. 
 

4.6  The rule of odd months  
        The fourth line and footnote in Conway’s rhyme describe the rule of odd 
months. Adding 4to the index of every odd month having 31 days; and 
subtracting 4 from the index of those that have only 30 days, yield the 
remaining doomsdays: 

Mar 3+ 4 = Mar 7, or 3/7,
May 5+ 4 = May 9, or 5/9,
 Jul 7 + 4 = Jul 11, or 7/11,
Sep 9 4 = Sep 5, or 9/5,
Nov11 4 = Nov 7, or 11/7,




 

Note that rule of odd months is consistent with the rule of March, and 
that for the remaining four months, 9is paired with 5 (5/9 and 9/5), while 7 is 
always paired with 11 (7/11 and 11/7). We can thus use the mnemonic 
“working  9 to 5 at the 7-Eleven,” the latter being a national convenience store 
chain. 

The rationale for the rule of odd months follows for each odd month: 
From the rule of March and Lemma 4.2, March 7, is a doomsday, Thus, 
adding 4 to the index of March (3) yields the doomsday March 7 =3/7. 
Next, we add 63 (a multiple of 7) to March 7, obtaining March 70. Carrying 
the months of March and April in succession, yields 

March 70=April(70−31)=May(70−31−30)=May 9,or5/9.  
Advancing  another 63 days, yields the doomsday May 72. Again we carry 
two months, 
 May 72=June(72−31)=July(72 – 31−30)=July 11,or 7/11. 
                   Jul67 = Aug (67 −31)=July(67 – 31−31)= Sep5,or 9/5. 
                    Sep68 = Oct (68 −30)=July(68 – 30 −31)= Nov7,or 11/7. 
See Table 1 for a summary of the doomsdays obtained for each month. 
 



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 47 

5.  Finding the doomsday in a future or past year 
       The second stanza of Conway’s poem describes how to find the 
doomsday for an arbitrary year. The basic fact to remember is that common 
years, like 2011, 2013, and 2014, have exactly 365 days. It is easy to verify 
that 365 = 7 × 52 + 1. Thus if the following year is a common year, then the 
doomsday advances by one day of the week. So in 2014 the last day of 
February, February 28, 2014, will fall on a Friday, and all of the dates shown 
in Table 1 will be Fridays in the year 2014. Likewise, if the current year is a 
common year, then the doomsday of the previous year retreats by one day of 
the week. Thus, the doomsday for 2012 (February 29, 2012) was a 
Wednesday. 
 Leap years on the other hand have 366 = 7 × 52 + 2 days. Thus if the 
following year is a leap year, then its doomsday will advance by two days of 
the week. And if the current year is a leap year then the previous year’s 
doomsday would be two days earlier in the week. Thus, the doomsday of 2011 
was Wednesday – 2 = Monday. The following table (in which leap years 
appear in bold typeface) illustrates this. 

Doomsdays 
Jan. 3or 31

4or 32
     Rule of January  Jul. 11 

 
Rule of odd months (7+4) 
 

Feb. 28
29
     Basic definition  Aug. 8 Rule of even months (8/8) 

Mar. 7 Rule of odd months 
(3+4)  Sept. 5  Rule of odd months (9−4) 

Apr. 4 Rule of even months 
(4/4)  Oct. 10 Rule of even months 

(10/10) 
May. 9 Rule of odd months 

(5+4)  Nov. 7 Rule of odd months (11−4) 
 

Jun. 6 Rule of even months 
(6/6)  Dec. 12 Rule of even months 

(12/12) 
Table 1: A summary of the doomsday rules applied to each month of the year. 
For those dates appearing in curled braces, the upper value should be used in a 
non-leap year, and the lower, in a leap year. 
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Year 
Doomsday 

 
 

1988 
Mon. 

1989 
Tue. 

1990 
Wed. 

1991 
Thu. 

1992 
Sat. 

1993. 
Sun. 

1994 
Mon. 

1995 
Tue. 

1996 
Thu. 

1997 
Fri. 

1998 
Sat. 

1999 
Sun. 

Year 
Doomsday 

 
 

2000 
Tue. 

2001 
Wed. 

2002 
Thu. 

2003 
Fri. 

2004 
Sun. 

2005 
Mon. 

2006 
Tue. 

2007 
Wed. 

2008 
Fri. 

2009 
Sat. 

2010 
Sun. 

2011 
Mon. 

Year 
Doomsday 

 
 

2012 
Wed. 

2013 
Thu. 

2014 
Fri. 

2015 
Sat. 

2016 
Mon. 

2017 
Tue. 

2018 
Wed. 

2019 
Thu. 

2020 
Sat. 

2021 
Sun. 

2022 
Mon. 

2023  
Tue. 

Table 2: The day of the week on which the doomsdays listed in Table 1 fall 
on. Leap years are identified in bold font 
6.  The twelve-year rule 
 Also note any 12-year jump forward (up to the 99th year in a century) 
advances the doomsday by one day of the week for both leap or non-leap 
years. Actually, we don’t need the table to figure this out. Every such 12year 
period contains exactly 3 leap years, and therefore exactly 12 – 3=9 non-leap 
years. So moving forward by twelve years advances the doomsday by 
3×2+9×1=15 days. Subtracting two sets of 7(remember adding or subtracting 
7 does not change the weekday) yields 15−14 =1. So the day advances by 1, 
and thus the doomsday in 2026will fall on a Saturday. Going backwards by 12 
results in a 1 day retreat, so the doomsday in2014−12=2002 was Thursday. 
We’ll call this the twelve-year rule.  
 
7.  Computing the doomsday for an arbitrary year 

To simplify computing the doomsday for years in different centuries, 
Conway’s algorithm uses the last year of each century as a reference. It is not 
difficult to verify that the doomsdays for these years obey the following 
pattern, (see lines 11 and 12 in the poem): 

GREGORIAN CENTURIES BY DOOMSDAY 
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY 

1700  1600 1500    
2100  2000 1900  1800  
2500  2400 2300  2200  
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Note that every Gregorian century mark divisible by 400 is a leap year, 
and has a doomsday of Tuesday. Furthermore, the doomsday retreats by two 
weekdays with every advancing (non-leap year) century. The ultimate short 
cut is expressed in the second stanza (lines 5–8). For July 4, 1776. Start with 
the century mark 1600; the doomsday is Tuesday. Moving forward to 1700, 
the doomsday falls back two days to Sunday. Now find the largest multiple of 
12 that is less than or equal to 76 (that is 1776 − 700). Clearly 76 = 12 × 6 + 4. 
So the doomsday advances 6 days, for the quotient, plus 4 days for the 
remainder, plus 1 more day because 1776 is in fact a leap year. Thus the 
doomsday of 1776 is Sunday plus 11 days, which by the lemma equals 
Sunday minus three days, or Thursday. Since July 4, is always a doomsday, 
July 4, 1776 was a Thursday. 
 Sometimes we may see the notation ⌊76/12⌋=6, which means that the 
greatest integer contained in the quotient 76/12 =6.333...is 6. The function 
⌊x⌋is called the floor of x. Likewise, we frequently represent the remainderby 
the mod, or modulus. Explicitly76 mod 12 =4. Consequently, the entire 
doomsday calculation for July 4, 1776 can be written as 
Sunday+⌊76/12⌋+76mod12+⌊(76mod12)/4⌋=Sunday+6+4+1=Sunday +11=Thursday. 
Finally, for the Julian calendar (which was still used in English speaking 
countries and colonies up to 1750), the doomsdays retreated by one day every 
century.  
 

JULIAN CENTURIES BY DOOMSDAY 
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY 

0       
700 600 500 400 300 200 100 

1400 1300 1200 1100 1000 900 800 
    1700 1600 1500 
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8.  Methods for Accelerating Conway's Doomsday Algorithm 
We propose a modification of a key component in the Doomsday 

Algorithm for calculating the day of the week of any given date. In particular, 
we propose to replace the calculation of the required expression:  

x x mod12x mod1212 4
            

with 

   
2(y mod 2) z2y 10(y mod 2) z 4

        
where x is an input 2-digit year;  

y is the tens digit of x;  
           z is the ones digit of x;  

We  argue  the  fact  that  our  modification  operates  on individual  
base-10  digits  makes  the  algorithm  easier  to calculate mentally.  
The Doomsday algorithm's input is a calendar date of the form MM/DD/ 
YYYY where MM is the month, DD is the day, and YYYY is the year. 
YYYY can further be broken down to its constituent century CC and year 
within the century YY. The output of the algorithm is a number between 0 to 
6 that corresponds to each of the 7 days for the week.  

The  key  equation  of  the  Doomsday  algorithm  can  be  described  a  
sum  (modulo  7)  of three terms:  
     day_of_the_week = ( doomscentury + doomsyear + doomsmonth  ) mod 7  
where:  
 doomscentury(CC) is a function of the input date's century  

doomsyear(YY) is a function of the input date's 2-digit year within a 
century  

doomsmonth(MM,DD) is a function of the input date's calendar month 
and day. 
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The doomsyear formula provided by Conway is:  
x x mod12x mod1212 4

            
where x is the input date's 2-digit year within a century. The addition is 
always modulo 7, so the resulting sum is a number between 0 and 6, inclusive. 
 
8.1  Simple Method 
Let us break down the two-digit year x into its constituent digits y and z, 
where y is the tens digit, and z is ones digit.  That is,  

xy 10
      

z x mod10  
For example, if x = 74, then y= 7 and z = 4.  If x = 88, then y= 8 and z = 8.   
Having defined y and z in terms of x, we propose the replacement doomsyear 
function as  

doomsyear (y,z) =  2 y + 10(y mod 2) + z + leaps     
where (y mod 2) is really just a decision function to tell whether y is odd or 
even.  

(y mod 2) = 1 if y is odd 
(y mod 2) = 0 if y is even 

We define an extra variable called leaps as the number of leap years between 
the start of the y decade and the z year. If the start of a decade is a leap year, 
we don't count it. But if the year z is a leap year, we do include it. For 
example, if x = 88, the decade starts at 80 and we have leaps = 2 because 84 
and 88 are leap years. If x = 74, the decade starts at 70 and we have leaps = 1 
because 72 is a leap year. In general, the variable leaps can only have three 
values: 0, or 1, or 2. There can't be more than 2 leap years after the start of a 
decade. Remember, we never include the start of the decade in our leap count.  
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The explicit formula for leaps is  
2(y mod 2) zleaps 10

      
8.2 Examples. 
Let's calculate the doomsyear term for these years:  
1)   1974:  y = 7, z = 4  
 doomsyear = 2*7 + 10*1 + 4 + leaps  = 14 + 10 +  4 + 1 = 29 = 1(mod 7)  

leaps = 1 because 1972 is a leap year  
2)  2040:  y = 4, z= 0  
 doomsyear = 2*4 + 10*0 + 0 + leaps = 8 + 0 + 0 + 0  = 1(mod 7)  

leaps = 0  
3)  2010: y = 1, z = 0  
 doomsyear = 2*1 + 10*1 + 0 + leaps = 2 + 10 + 0 + 0 = 12 = 5(mod 7)  
 leaps = 0  
4)  1988: y = 8, z= 8  

doomsyear = 2*8 + 10*0 + 8 + leaps  = 16 + 0 + 8 + 2  = 26  = 5(mod 7)  
  leaps = 2  because 1984 and 1988 are leap years  
5)  2007:  y = 0, z= 7  

doomsyear = 2*0 + 10*0 + 7 + leaps  =  0 + 0 + 7 + 1  = 8 = 1(mod 7)  
 leaps = 1 because 2004 is a leap year  
6) 1998:  y = 9, z=8  

doomsyear = 2*9 + 10*1 + 8 + leaps = 18 + 10 + 8 + 2  =  38 = 3 (mod 7)   
 leaps = 2 because 1992 and 1996 are leap years. 
Let’s define the decade anchor to be the 2y + 10(y mod 2) subexpression of 
our doomsyear term. This subexpression only depends on the y decade of the 
input year.   
                            decade_anchor(y) = ( 2 y + 10 (y mod 2)  ) mod 7  
  Here is the table to memorize: 

         



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 53 

     y                     decade             2y + 10(y mod 2)         decade anchor 
0                        00’s                     0                                    0 
1                        10’s                    12                                   5 
2                        20’s                     4                                    4 
3                        30’s                    16                                   2 
4                        40’s                     8                                    1 
5                        50’s                    20                                   6 
6                        60’s                    12                                   5 
7                        70’s                    24                                   3 
8                        80’s                    16                                   2 
9                        90’s                    28                                   0 

Table : Decade anchor lookup 
 If we memorize this simple table of 10 numbers, we can avoid 
calculating the decade anchor 2y + 10 (y mod 2) component of the doomsyear 
formula.  
Thedoomsyeaformula is thus:  
   doomsyear(y,z) = decade_anchor(y) + z + leaps  
 Let’s look at a table of possible values for the leap term depending on the 
digit year z: 
 

digit year z leaps leaps if y is even  leaps if y is odd 
0 0 0 0 
1 0 0 0 
2 0 or 1 0 1 
3 0 or 1 0 1 
4 1 1 1 
5 1 1 1 
6 1 or 2 1 2 
7 1 or 2 1 2 
8 2 2 2 
9 2 2 2 

Table : Possible Values for leap 
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Table 3: Doomsyear Values from 00 to 99 

year     Conway's      2y + 10 (y mod 2) 
           doomsyear      + z + leaps 

year     Conway's      2y + 10 (y mod 2) 
           doomsyear      + z + leaps 
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8.3 Conway’s Look-up Table Acceleration Method 
       John Horton Conway devised an acceleration method to speed-up the 
calculation of the doomsyear term. In practice, Conway’s method is probably 
the fastest acceleration method for such, but it involves memorizing 18 
numbers and some non-intuitive rules. Now, we will describe Conway’s look-
up table method. And then, we will compare and contrast our method with 
Conway’s acceleration method.  
Conway’s lookup table method requires memorizing the years of the century 
where  the doomsyear value is zero. Let us call these numbers as zero-anchor 
years. These are:  

0 6 11.5 17 23 28 34 39.5 45 
51 56 62 67.5 73 79 84 90 95.5 

There’s actually the added complication of the half-numbers: 11.5, 
39.5, 67.5 and  95.5. These half-numbers mean that the preceding year has 
doomsyear value 6 and the succeeding year has doomsyear value 1. For 
example, doomsyear (11) = 6, and doomsyear(12) = 1; doomsyear (67) = 6, 
and doomsyear (68) = 1.  These half-numbers occur because of the increment-
by-2 property of doomsyear values during leap years.  In  effect, a doomsyear 
of  value  0  got  skipped  in  the  half-number locations.  
Here are the steps of Conway’s acceleration method:  
1)  Select the nearest zero-anchor year less than your input year.  
2)  Let 0z  be the difference between your input year and the selected zero-

anchor. Ignore fractional values of half-numbers in zero-anchor years. 
That is, treat 11.5, 39.5, 67.5, and 95.5 as 11, 39, 67, and 95 respectively 
in calculating the difference  

3)  Count the number of leap years between the zero-anchor and your input 
year. If  the zero-anchor year is a leap year, do not include it. On the 
other hand, if  your input year is a leap year, include it in the leap 
count.  Let us denote this  count of leap years as 0leap  
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4)  Add 0z and 0leap to get the doomsyear value. If the selected zero-anchor is 
a half- number, subtract 1 from the sum. We denote this as the anchor 
adjustment term  needed for half-number zero-anchors.  

To sum it all up, Conway’s acceleration method can be described by the 
equation:  

doomsyear = anchor_adjustment + 0z  + 0leap  
Note that the anchor_adjustment term is almost always zero except for half-
number years where it has a value of –1.  
8.4 Examples   
1)  1974:   
 zero-anchor is 1973  
 0z = 1974 – 1973 = 1  
 0leap  = 0  
 doomsyear = 1 + 0 = 1 
2)  2040:    
 zero-anchor is 2039.5  

0z = 2040 – 2039 = 1  
 0leap =1 because 2040 is a leap year  
 doomsyear =  – 1 + 1 + 1 = 1 
3)  2010:   
 zero-anchor is 2006  
 0z = 2010 – 2006 = 4  
 0leap = 1 because 2008 is a leap year  
 doomsyear = 4 + 1 = 5  
4) 1988:   
 zero-anchor is 1984  
 0z = 1988 – 1984 = 4  
 0leap  = 1 because 1988  is a leap year. Remember, we don’t count the 

zero-anchor  
 doomsyear = 4 + 1 = 5 
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5)  2007:    
  zero-anchor is 2006  
 0z = 2007 – 2006 = 1  
  0leap = 0  
  doomsyear = 1 + 0  = 1  
6)  1998:    
  zero-anchor is 1995.5  
  0z = 1998 – 1995 = 3  
  0leap = 1 because 1996 is a leap year  
   doomsyear = – 1 + 3 + 1 = 3 
7)  1914:    
  zero-anchor is 1911.5  
  0z = 1914– 1911 = 3  
  0leap = 1 because 1912 is a leap year  
  doomsyear = – 1 + 3 + 1 = 3 
8)  1972:    
 zero-anchor is 1967.5  
 0z  = 1972 – 1967 = 5  
 0leap = 2 because 1968 and 1972 are leap years  
 doomsyear = – 1 + 5 + 2 = 6 
 
9. A Comparison of Simple Acceleration Method with Conway’s 
Simple method  is  amenable  to  lookup  table acceleration. In fact, we claim 
that after this lookup table acceleration, simple method is very similar in form 
to Conway’s acceleration method. Let us compare and contrast the doomsyear 
equation for simple method and Conway’s method. These are:  
    doomsyear(y,z) = decade_anchor(y) + z + leaps 
and  

      doomsyear(x) = anchor_adjustment(x) + 0z + 0leap  
respectively.. Let us list down these similarities.  
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 1) Both equations are the sum of 3 terms. Each of these terms corresponds 
with counterpart in the other method.  

2) Both equations use memorization of an anchor year for the speedup. In 
simple method, the starting year of the decade serves as the anchor.  In 
Conway’s  method, years with doomsyear value of zero are used as the 
anchor.  

3)  Both  equations  use  z  as  the  number  of  years  between  the  input  year  
and the  anchor year. We can consider z as the offset from the anchor. 

4)  Both equations contain a leap count correction term that counts the number 
of leap years between the anchor year and the input year.  

We  now  list  down  differences  between  the  2  equations  and  mention  
some  advantages  of  our method over Conway’s method.  
1)  In simple method, z is not computed. It is part of the input. In Conway’s 

method, 0z  has to be calculated by subtracting the zero-anchor year from 
the input year.  

2)   In  simple  method,  one  has  to  memorize  10  digits  for  the  anchoring. 
In Conway’s method, one has to memorize 18 numbers for the anchoring.  

3)  In simple method, the leap count correction term follows a regular pattern 
for a given decade and is amenable to another speedup via memorization.   

4)  In  simple method,  we can  always  fall  back  to  using  the 2y  +  10       
(y  mod 2)  calculation  if entries in the lookup table are forgotten. 
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RELATIONS BETWEEN CAYLEY GRAPH AND VERTEX-
TRANSITIVE GRAPH  

Aye Aye Myint* 
Abstract 

  In this paper, we first express basic concepts of graph theory. Then 
we define vertex-transitive graph and Cayley graph with a given group by 
using generating set or nongenerating set. Finally, we prove that every 
Cayley graph is vertex-transitive graph and we also give an example that 
the converse of this theorem is false. 
Keywords:  graph, digraph, connected, vertex-transitive, group, order, 

Cayley graph, Cayley digraph, diameter of a graph. 
1. Basic Concepts  of  Graph Theory 
 A graph  G = (V(G), E(G)) with  n  vertices and  m  edges consists of 
a vertex set  V(G)={ v1, v2, . . . , vn } and an edge set  E(G) = { e1, e2, . . ., em}, 
where each edge consists of  two (possibly equal) vertices called its endpoints. 
We write uv  for an edge  e = (u, v). If uv E(G), then  u  and  v  are 
adjacent. The ends of an edge are said to be incident with the edge. A loop is 
an edge whose endpoints are equal. Parallel edges or multiple edges are 
edges that have the same pair of endpoints. A simple graph is a graph having 
no loops or multiple edges. A graph is finite if its vertex set and edge set are 
finite. We adopt the convention that every graph mentioned in this paper is 
finite, unless explicity constructed otherwise. The degree of  a vertex  v  of  a 
graph  G is the number of edges of  G  which are incident with  v . A graph is 
said to be regular (k-regular) if all its vertices have the same degree (k). A 
three-regular graph is also called a cubic graph. A simple graph in which 
each pair of distinct vertices is joined by an edge is called a complete graph. 
A complete graph on n vertices is denoted by Kn. A sequence of distinct edges 
of the formv0v1, v1v2, . . . , vr-1vr is called a path of length r from v0 to vr, 
denoted by (v0, vr)-path. The distance between two vertices u and v in a graph 
G is the length of the shortest path from u to v. The diameter of a graph is the 
maximum distance between two distinct vertices. 
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Figure 1.1: A graph G with diameter 2 
 

A subgraph of a graph  G = (V(G), E(G)) is a graph Y = (V(Y), E(Y)) 
with  V(Y)  V(G) and E(Y)  E(G).Two vertices u and v of G are said to be 
connected if there is a (u, v)-path in  G . A connected graph is a graph such 
that any two vertices are connected by a path, otherwise it is disconnected.  
 A directed graph (or digraph) G = (V(G), E(G))   consists of a finite 
nonempty set V(G) , called the set of vertices, and set E(G) of ordered pairs 
of (not necessarily distinct) vertices, called the set of (directed) edges or 
arcs. If e = (u, v) or uv is a directed edge of G , we say that e joins u  to v , 
that u  and v are endpoints of e(more specifically that u  is the tail of e and 
v  is the head of e). A digraph G  is called symmetric if, whenever (u, v)  is 
an arc of G , then (v, u)  is also. A digraph G  is called complete if for every 
two distinct vertices u  and v of G , at least one of the arcs (u, v) and (v, u)  is 
present in G . A complete symmetric digraph of order n  has both arcs (u, v)  
and (v,u)  for every two distinct vertices u  and v , denoted by nK .                                                       
 
 
 
 

Figure 1.2:  A complete symmetric digraph 3K  
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2. Vertex-Transitive Graph 
Before defining a vertex-transitive graph, we express the definition of  

an automorphism of a graph which plays a crucial role in determining the 
vertex-transitive graph.  

 An isomorphism from graph G to graph G  is a bijection
:V (G) V (G )   such that uv E(G)  if and only if (u) (v) E(G ).    We 

say ''G is isomorphic to G '', written G G ,  if there is an isomorphism from 
G to G . 
 The graphs G and G drawn below are isomorphic by an isomorphism 
that maps u, v, w, x, y, z to l, m, n, p, q, r respectively.  
 
 

G :  G :  
    
 

Figure 2.1:  Isomorphic graphs G and G  
 A permutation of  V(G) is a function from V(G) into V(G) that is 
both one to one and onto. 
 An automorphism of a (simple) graph G is a permutation  of  V(G) 
which has the property that uv E(G)  if and only if (u) (v) E(G)   , that is 
an isomorphism from G to G. The set of all automorphisms of a graph G 
forms a group under the operation of composition, which is called the 
automorphism group.  
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Figure 2.2:  Complete graph 5K  
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 In Figure 2.2, there is an automorphiosm  of 5V(K )   such that
(a) b, (b) c, (c) d, (d) e, (e) a.           

For any two vertices u and v of G, there is an automorphism of G  
such that  u v,   we say that G is vertex-transitive. 

 
  Figure 2.3:  Vertex-transitive graph G 

 

Now we interested in the structure of vertex-transitive graphs, in 
particular, Cayley graphs. First, we have to introduce some definitions of 
group theory.  
 

3.Basic Definitions of  Group Theory 
 A nonempty set of elements X is said to form a group if in X there is 
defined a binary operation, called the product and denoted by⋅, such that  
(i)  a, b X  implies that a ⋅b  X  (closed). 
(ii) a, b, c  X  implies that a ⋅ (b ⋅c) = (a⋅ b) ⋅c (associative law). 
(iii) There exists an element e X such that a ⋅ e = e ⋅ a = a for all a  X (the 

existence of an identity element in X).   
(iv) For every a  X there exists an element a–1 X such that 

–1 1a a a a e    (the existence of inverses in X). 
 We usually write a b instead of a ⋅b. 

A finite group is a group which has a finite number of elements, 
otherwise we call it an infinite group. 

a b 

e 

c 

f 

d 
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  The number of elements in X is called the order of X and it is denoted 
by O(X)or X .We define the order of an element x to be the least positive 
integer n such that nx e  and we denote it by O(x) or x . 
 A nonempty subset S of a group X is said to be a subgroup of X if, 
under the product in X, S itself forms a group. 
 If S is a subgroup of X, a X , then  aS as|s S  . a S is called a left 
coset of S in X.  
 Let X be a group of permutation of a set A and b A, then the 
stabilizer of b (in X) is the subgroup  bX x X | x(b) b .    

A group X is called a cyclic group if there exists an element x X, 
such that every element of X can be expressed as a power of x. In that case x 
is called generator of X.  
 Let  i j 2 n 1

nD x y | i 0, 1; j 0, 1, ..., n 1; x e y , x y y x       . 
Then nD  is a group, called the dihedral group, (n 3) . nO(D ) 2n. In fact, 
we can write nD  also as 
  2 n 1 n 2 n 1 2 n 1

nD y, y ,..., y , y , x y, x y ,..., x y , x | x e y , x y y x      . 
   Let X be a group. A subset H X is a generating set of X  if every 
element of X  is obtainable as the product (or sum) of elements of H.  
  For the group nZ , a nonempty set of integers modulo n is a generating 
set if and only if its greatest common divisor (gcd) is 1. For instance, the set 
{4,7} generates 24Z , since gcd (4,7) = 1 but {6,9} does not generate 24Z , 
since gcd (6,9) = 3. 
  If A is a finite set {1,2, . . . ,n}, then the group of all permutations of A 
is the symmetric group on n letters, and is denoted by  nS . Note that nS  has  
n! elements. 
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4. Cayley Graphs 
 Now we shall express the definitions of Cayley graphs and the 
constructions of Cayley graphs with their given groups. 
 

4.1 Definitions 
 (i) Let X be a group and H a subset of X not containing the identity e.  

Then the Cayley digraph C  has vertex set V(C) X  and arc set  
E(C) { (g, gh) h H, g X }.    We write C C(X, H). 

 
 (ii) Let H X e.   Then the resulting Cayley digraph will be denoted by 

K K (X, H)   and called the complete Cayley digraph. 
 (iii) Let X be a group and H  a subset of X  not containing the identity e 

such that hH implies 1h H (that is, 1 1 1H H , where H {h h H})     . 
Then the graph with vertex set V(C) X  and edge set  E(C) (g, gh) h H, g X    is called the Cayley graph C 
corresponding to X, H.We write C C(X,H).  Equivalently, the 
Cayley graph C C(X, H)  is the simple graph whose vertex set and 
edge set are defined as follows: 

               1V(C) X; E(C) (g, h) g h H, where g X, h H .      
 (iv) When H is a set of generators for X the Cayley digraph and the 

Cayley graph will be referred to as the basic Cayley digraph and the 
basic Cayley graph respectively.   4.2  Examples 

(i)  Let X be the group Z5, the set of integers modulo 5.  
     Let H be generating set {1}. 
 We can construct the Cayley digraph 5C C (Z , H)  which has the vertex 
set 5V(C) Z {0, 1, 2, 3, 4};  and the arc set E(C) {(0,1),(1, 2),(2, 3),(3, 4),(4, 5)}.  
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    Figure 4.1: The Cayley digraph 5C(Z ,{1})

 
 (ii) Let X be the cyclic group C4 generated by 2 3a and H {a, a , a }.  
 We can construct the complete Cayley digraph 4K K (C , H)  which 
has the vertex set 2 3

4V(K) C {1, a, a , a };  and the arc set  
2 3 2 3 2 3 2 2 3 3 3 2E(K) {(1,a),(1,a ),(1,a ),(a,a ),(a,a ),(a,1),(a ,a ),(a ,1),(a ,a),(a ,1),(a ,a),(a ,a )}.

 
 
 
 
 
 
 
 
 
    
  Figure4.2: The complete Cayley digraph 2 3

4K (C ,{a, a , a })  
(iii) Let X be the symmetric group 3S {1, (12), (13), (23), (123), (132)}.  
 Let  H {(12), (13), (23)}.  

a3 a2 

a 1 

4 

0 

1 

2 3 
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 Then 1H H.   We can construct the Cayley graph 3C C (S , H) which 
has 
 3V(C) S ; E(C) (1,(12)), (1,(13)), (1,(23)), ((12), (132)), ((12), (123)),  
     ((13), (132)), ((13), (123)), ((23), (132)), ((23), (123)) . 
 
 
 
 
 
   Figure4.3: The Cayley graph 3C(S , {(12), (13), (23)}).  
 

4.3Theorem  
  The Cayley graph C(X, H)  is well-defined and is connected if and 
only if H is a set of generators for X.  
Proof. See [7].                                                                                                   
 

4.4   Examples 
(i) Let X be the dihedral group  2 3 2 3

4D 1, r, r , r , s, rs, r s, r s ,  where 
4 2r s 1,  1sr r s and H = { r, s }. 

Then H is a generating set for 4D . We can construct the Cayley digraph 
4C C (D , H)  has the vertex set 4V(C) D and the arc set 
 4E(C) (g, gh) g D , h H .  

 

(132) 

1 (12) 

(13) (123) 

(23) 
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Figure 4.4: The connected Cayley digraph 4C(D ,{r, s})  

(ii)  Let X be  8Z {0, 1, 2, 3, 4, 5, 6, 7} and let H {2, 6}.   
 Since 1H H and H is not a generating set, we can construct the 
disconnected Cayley graph C has vertex set 8V(C) Z and edge set 

 8E(C) (g, gh) g Z , h H .    
 
 
 

 
 
 
 
 

Figure 4.5: The disconnected Cayley graph 8C(Z , H)  
 In the above examples, we see that if the subset H is a generating set 
for the given group then the Cayley digraph is connected and if H is not a 
generating set then the Cayley graph is disconnected. 
 

1 r 

r2 r3 

rs 
r3s r2s 

s 

0 1 

2 

3 

4 5 

6 

7 
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5.  Relations between Cayley Graph and Vertex-Transitive Graph 
 In this section, we interested in a relation between Cayley graph and 
vertex-transitive graph. 
5.1Theorem  
 Every Cayley graph  C X, H  is vertex-transitive. 
Proof. 
 For each g in X we define a permutation g  of V(C) X  by the rule 

 g h gh,  h X.  
 This permutation g  is an automorphism of C , for  
 (h,k) E(C)  1h k H   
      1gh gk H   
       g gh , k E(C)    
 Now for any h, k  X,    1

1
kh h kh h k.

    
 Hence Cayley graph  C X, H is vertex-transitive.    
 
5.2 Petersen graph  
 The Petersen graph P(5,2) is a cubic graph having a vertex set  0 4 0 4V u ,...,u ,v ,...,v  and an edge set       i i 1 i i i i 2E u ,u , u ,v , v ,v | i 0,...,4    
where all the subscripts are taken modulo 5. The generalized Petersen graph  P n, k n 5, 0 k n   is the cubic graph having a vertex set 
 0 n 1 0 n 1u ,...,u ,v ,...,v   and an edge set       i i 1 i i i i 2u ,u , u ,v , v ,v | i 0,...,n 1     
where all the subscripts are taken modulo n. 
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Figure5.1: The Petersen graph P(5, 2). 

  
 The following is an example of a vertex-transitive graph which is not a 
Cayley graph.  
 

5.3  Example 
 The Petersen graph is vertex-transitive but it is not a Cayley graph. 
 Indeed, we can see the diameter of the Petersen graph is 2 and the 
diameter of a Cayley graph  C C X, H  is the smallest positive integer n 
such that 2 nX H H ... H    where  2H hk|h, k H   and i i 1H H H for i 3.   
 We now show that all the Cayley graphs of order 10 having degree 3 
are of diameter greater than 2 and so none of them is the Petersen graph. 
 There are two groups of order 10. The first one is the cyclic group 10Z  
and the second one is the dihedral group 5D .  The group operation here are 
additions and we replace 1H  by – H. 
Case 1. 
  10X Z 0, 1,..., 9 .   
Since – H = H and H 3, 5 H  and H can only be one of the following four 
sets  

u0 

u1 

u2 u3 

u4 
v0 

v1 
v2 v3 

v4 
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 1H   1, 5, 9 ,       2H  2, 5, 8 ,  
 3H   3, 5, 7 ,    4H  4, 5, 6 .  
Now i iH H 5   for each i 1, 2, 3, 4.  
Thus the diameter of C  is greater than 2. 
Case 2. 
  5X D 0, b, 2b, 3b, 4b, a, a + b, a + 2b, a + 3b, a + 4b   where 2a = 0, 5b = 0 
and b + a = a + 4b. 
 In this case a, a + b, a + 2b, a + 3b and a + 4b are the only elements of 
order 2 in X. 
 Hence H can only be one of the following three types of sets  
 1H    a + jb, b, 4b , j = 0, 1, 2, 3, 4;  
 2H    a + jb, 2b, 3b , j = 0, 1, 2, 3, 4;  
 3H    1 2 3 1 2 3a + j b, a + j b, a + j b , 0 j < j < j 4.   
 Now i iH H 5   for each i = 1, 2, 3. 
 Thus the diameter of C  is greater than 2 also. 
 Petersen graph is a vertex-transitive graph but it is not a Cayley graph. 
 From the above example, we see that every vertex-transitive graph is 
not a Cayley graph. But every vertex-transitive graph can be constructed 
almost like a Cayley graph. This result will be shown in Theorem 5.5. We 
shall apply the following theorem to prove Theorem 5.5. 
 

5.4  Theorem 
 Let S be a subgroup of a finite group X and let H be a subset of X such 
that   1H H  and H S  . If G is the graph having vertex set V(G) X S  
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(the set of all left cosets of S in X) and edge set  1E(G) (xS, yS) | x y SHS  , 
then G is vertex-transitive. 
Proof. 
 We first show that the graph G is well-defined. 
 Suppose that (xS, yS) E(G)   and 1 1x S xS, y S yS.   
 Then  1 1x xs, y yk  for some s,k S.  

1 1

1
1 1

1 1

Now x y SHS (xs) (yk) SHS
x y SHS
(x s, y s) E(G).

 


  

 
 

 

 Hence the graph G is well-defined. 
 Next, for each g X  we defined a permutation g of V(G) X S    by 
the rule such that g (xS) gxS, xS X S.    
 This permutation g  is an automorphism of G, for 

 

 

1

1

g g

(xS, yS) E(G) x y SHS
(gx) (gy) SHS
(gxS, gyS) E(G)

(xS), (yS) E(G).




  

 
 
   

 

 Finally, for any 1
1

yxxS, yS X S, (xS) yx (xS) yS.
     

 Hence the graph G is vertex-transitive.                                                  
 
The graph G constructed in above theorem is called the group-coset 

graph X S  generated by H and is denoted by G(X S, H).  
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5.5  Theorem 
 Let G be a vertex-transitive graph whose automorphism group is A. 
Let bH A  be stabilizer of b V(G).  Then G is isomorphic with the group-
coset graph G(A H , S)   where S is the set of all automorphism x of G such 
that  b, x(b) E(G).  
Proof. 
 We can see that 1S S and S H .     
 We now show that :A H G  given by (xH) x(b),   where xH A H , 
defines a map. 
 Suppose xH yH.  
 Then y xh   for some y H.  
  (yH) y(b) (xh)(b) x h(b) x(b) (xH).        
 We next show that   is a graph isomorphism. 
 Suppose (xH) (yH).    

1

1

T hen x (b) y (b)
y x (b ) b

y x H
x yH

yH xH.











 

 So  is one to one. 
 Let c be a vertex of G. 
 Since G is vertex-transitive, there exists z in A such that  z(b) c  
 Thus (zH) z(b) c.    
 So is onto.  
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 

 
 
 
 

1

1

1 1 1

1 1 1

1

Next (xH, yH) E G(A H,S) x y HSH
x y hzk for some h, k H, z S
h x yk z
b, h x yk (b) E(G)
b, x y(b) E(G)
x(b), y(b) E(G)
(xH), (yH) E(G).





  

  



  
   
 
 
 
 
   

 

 Thus G is isomorphic with the group-coset graph G(A H, S).  
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GRAPHS WITH THE SPECIFIED EDGE GEODETIC 
NUMBERS 

 

Kyaw Lin Aung1, Tin Mar Htwe2 
 Abstract 

  Firstly we state some properties of the edge geodetic number of the 
connected graphs. Then the edge geodetic numbers of some special graphs 
are derived. Next we study the graphs with the edge geodetic number 2. We 
also state the necessary and sufficient conditions for a graph G with n 
vertices to have the edge geodetic number ge(G) = n – 1 orge(G) = n. Finally 
we characterize the graphs which have the specified edge geodetic numbers. 

 Keywords:   Edge geodetic cover, Edge geodetic basis, Edge geodetic number 
 

1. Some Properties of the Edge Geodetic Number of a Connected Graph  In this section, being based on [1] through [4], we state the following 
basic results of the edge geodetic number of a connected graph. 
 1.1 Definitions.  

An edge geodetic cover of a graph G is a set S⊆V where V is the set of 
vertices of G such that every edge of G is contained in a geodesic joining 
some pair of vertices in S. The edge geodetic number ge(G) of G is the 
minimum order of its geodetic covers, and any edge geodetic cover of order 
ge(G) is an edge geodetic basis. If S is an edge geodetic basis of G and a 
vertex x ∈ S, then x is called a basic vertex with respect to the basis S. 

 

1.2 Example.  
 
 
 
 

Figure. 1 

G: 

v2 

v4 

v3 v6 

v5 

v1 
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 Consider the graph G shown in Fig. 1, any vertex set S containing two 
vertices from { v1, v2, v3, v4, v5, v6} is not an edge geodetic cover. Thus,           
ge(G) ≥ 3. 
 If S = { v1, v3, v5}, we can see that it is not an edge geodetic cover of 
G. But if S = { v2, v4, v6}, it is an edge geodetic cover of G and has minimum 
order. Thus the edge geodetic number ge(G)  of G is 3 and S is an edge 
geodetic basis of G and v2, v4, v6 are basic vertices with respect to S.  
 

1.3 Remark. The edge geodetic number of a disconnected graph is the sum of 
the edge geodetic number of its components. Thus we will consider only 
connected graphs in the next sections.  
 

1.4 Theorem.  For every nontrivial graph G of order n,  2 ≤  ge(G) ≤ n. 
Proof. An edge geodetic cover needs at least two vertices and therefore 
ge(G)≥ 2. Clearly the set of all vertices of G is an edge geodetic cover of G. 
This means that ge(G)≤n. Thus 2 ≤  ge(G) ≤ n.                                                          
 

1.5 Theorem.  Each extreme vertex of G belongs to every edge geodetic basis  
of G. 
Proof. Let x be an extreme vertex of a connected graph G. 
 Suppose W ⊆V is any edge geodetic basis of G and x∉W. 
 Then there are two vertices u1, v1 in W such that the shortest path 
between them must contain x, say P: u1 . . . uxv. . . v1. 
 Since x is an extreme vertex, u and v are adjacent. Moreover, the other 
path Q: u1. . .uv. . . v1 exists between u1 and v1 having length, one less than the 
path P, and will not contain the edges ux and xv. 
 It contradicts the facts that P is the shortest path and W is an edge 
geodetic basis of G. 
 Hence  x ∈ W.                                                                
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1.6 Corollary. Each pendant vertex of G belongs to every vertex geodetic 
basis of G. 
Proof. Every pendent vertex is an extreme vertex. 
  It completes the proof.                                                    
 

1.7 Theorem.  For any graph, no cut vertex of G belongs to any edge geodetic 
basis of G. 
Proof. Let x be a cut vertex of a connected graph G and W⊆V be an edge 

geodetic basis of G. 
 Suppose x∈W. 
 Since x is a cut vertex, G – x is disconnected and suppose that G – x 
consists of k components G1, G2, . . .,Gk where k ≥ 2. 
 Obviously W contains at least one vertex yi (being adjacent to x) of 
each component Gi, i = 1, 2, . . .,k. 
 Otherwise, W  will not be the edge geodetic cover of G. 
 Consider the set W∖{x} and any edge u1u2∈E where u1≠x, u2≠x. 
 Then u1u2 is on a shortest vw-path in G where v, w∈W. If v≠x and w≠x, 
then u1u2 lies on a shortest vw-path where v, w∈ W ∖{x}. 
 Suppose v = x and w = yi where yi∈ Gi. Then u1u2 is on a shortest xyi-
path, say P. 
 Consider the vertex yj of Gj where j≠i. Let Q be a shortest yjx-path. 
 Then the union of P and Q is a shortest yiyj-path say R, both xu1 and 
u1u2lie on R. It follows from these discussions that W ∖{x} is an edge geodetic 
cover of G. 
 This contradicts to the hypothesis that W is an edge geodetic basis of 
G. 
 Hence  x ∉ W.       
 The proofs of Theorem 1.5, Corollary 1.6 and Theorem 1.7 can also be 
seen in [4]. 
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From Theorem 1.4, Theorem 1.5 and Theorem 1.7, we obtained the following 
theorem which states the bounds of edge geodetic numbers of a graph. 
 

1.8 Theorem.  For any graph G of order n with m extreme vertices and k cut 
vertices,   max {2, m} ≤  ge(G) ≤  n − k. 
 By applying above theorems, we derive the edge geodetic numbers of 
some well-known graphs that are described in Theorem 1.9 to Theorem 1.13. 
1.9 Theorem. The edge geodetic number ge(Pn) of any path Pnis 2. 
Proof. Every path has two extreme vertices. Thus the number of extreme 

vertices of the path Pn is 2.  
 By Theorem 1.8, ge(Pn) ≥ max  {2, 2}  
                                                    = 2.  
 Moreover the path Pn has n – 2 cut vertices.  
 By Theorem 1.8, ge(Pn)  ≤ n – (n – 2)   
                                                     = 2.              
 Hence, ge(Pn)  = 2.                         
 
1.10 Theorem. The edge geodetic number of any tree is the number of its 
pendant vertices. 
Proof. Consider the tree T with n vertices and m pendant vertices. Every tree 
has at least two pendant vertices and every pendant vertex is extreme vertex. 
Thus m ≥ 2. 
 By Theorem 1.8, ge(T) ≥ max {2, m}                                  
                                                 = m. 
 Moreover, every vertex in a tree is either pendant vertex or cut vertex. 
 Hence, the number of cut vertices of the tree T is n − m.                                   
By Theorem 1.8,    ge(T) ≤ n− (n – m)  
    = m.  
          So, we get ge(T) = m.                                  
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1.11 Theorem. The edge geodetic number of an even cycle is 2 and of an odd 
cycle is 3. 
Proof. Let C be a cycle with 2n vertices v1,v2, . . ., v2n in order. 
   Let W = { v1, vn+1}. Then every edge of C is contained in a shortest 
path joining the vertices of W. Therefore W is an edge geodetic cover of C and 
so        ge( C) ≤│W│= 2. Since ge( C) ≥ 2,  ge( C ) = 2. 
 Let C be a cycle with 2n + 1 vertices v1, v2, . . .,v2n+1 in order.                   
 Let W = { v1, vn+1, vn + 2}. Then every edge of C is contained in a 
shortest path joining the vertices of W. Therefore W is an edge geodetic cover 
of C and so        ge( C) ≤ │W│ = 3. Since ge( C) ≥ 2,  ge( C ) = 3. 
1.12 Theorem. For the complete graph Kn(n≥ 2), ge(Kn) = n. 
Proof. Consider the complete graph Kn.  
 In any complete graph every vertex is extreme vertex and no vertex is 
cut vertex. By Theorem 3.11, ge(Kn) ≥ max { n, 2}  
 = n. 
   And                         ge(Kn) ≤n – 0  
   Hence,                     ge(Kn) = n.                              
 

1.13 Theorem. For the complete bipartite graph G = Km,n, 
  ge(G) = 2 if m = n = 1; 
  ge(G) = n if m = 1, n≥ 2; 
  ge(G) = min {m, n} if m, n≥ 2. 
Proof. (i) For m = n = 1, K1,1is a path P2 and hence ge(K1,1) = 2. 
           (ii) For m = 1 and n≥ 2, consider K1,n.  

     K1,n has n extreme vertices and only one cut vertex.                                   
                 By Theorem 3.11, max {n, 2} ≤ ge(K1,n)  ≤ (n + 1) – 1   

    n ≤ ge(K1,n)  ≤n 
               ge(K1,n)  = n.        
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          (iii) Now consider Km,nfor m, n≥ 2 and suppose m≤n.  
                 The Km,n can be decomposed as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

u1 

u2 

vm 

v3 

v2 

v1 
Km,n: 

un 

u3 

(a) 

v3 

Figure. 2 

v1 u1 

v2 

v3 

vm 

u2 

v1 

vm 

v2 

un vm 

v3 

v1 

v2 

(d) (c) (b) 
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Now, ge(Km,n)  = ge( n
Km,1)  

                        = minimum order of edge cover of 
n
Km,1 

 = minimum order of union of edge geodetic cover of Km,1 
  = minimum order of 

n
 { v1, v2, . . ., vm } 

  = minimum order of { v1, v2, . . ., vm } 
 = m.                                                                                  
 The proofs of theorems from Theorem 1.10 to Theorem 1.13 can also 
be seen in [4]. 
 
2. Conditions for Graphs to Have Some Specified Edge Geodetic 
 Numbers 
  In this section, we study some theorems that characterize graphs for 
which the edge geodetic number ge(G) is 2and some necessary and sufficient 
conditions of a graph G with n vertices to have the edge geodetic number 
ge(G) = n – 1 orge(G) = n. We mainly refer to [5]. 
 

2.1 Theorem.  For a connected graph G, ge(G) = 2 if and only if there exist 
peripheral vertices u and v such that every edge of G is on a diametral path 
joining u and v. 
2.2 Theorem. If G has exactly one vertex v of degree n – 1, then ge(G)= n – 1. 
2.3 Corollary.  If G has exactly one vertex v of degree n – 1, then G  has a 
unique edge geodetic basis consisting of all the vertices of G other than v. 
Proof. Let G be a graph with n vertices and suppose the vertex v is the only 
one vertex of degree n – 1. By Theorem 2.2,ge(G) = n – 1. 
 Since d(v) = n – 1 , v must be adjacent to the remaining v1, v2, . . .,vn– 1 
vertices of G. It means that v is on the shortest path with length 2 of any two 
vertices of S = { v1, v2, . . ., vn–1}. In other words, all the edges of G which join 
v with each of v1, v2, . . .,vn– 1 are on the shortest path of any two vertices of S. 
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 On the other hand, each edge joining any two vertices from v1, v2, . . 
.,vn– 1does not lie on any geodesic joining two vertices of S other than 
themselves. Thus S is a geodetic cover and ge(G) ≤n – 1. But ge(G) = n – 1 and 
S is the geodetic basis of G. Since v is the exactly only one vertex of degree n 
– 1, S is a unique edge geodetic basis consisting of all the vertices of G other 
than v.  
 

2.4 Theorem.  Let G be a graph of order n≥ 3. If G contains a cut vertex of 
degree n – 1, then ge(G) = n – 1. 
Proof. Let v be a cut vertex of G of degree n – 1. It must be the only such 
vertex. For, suppose u be another cut vertex of degree n – 1. So, u will be 
adjacent with the remaining n – 1 vertices of G. Although we remove v from 
G, G will bestill connected. It contradicts that v is a cut vertex. Sov is the only 
vertex of degree n – 1 and hence by Theorem 2.3, ge(G) = n – 1. 
 Now we discuss the edge geodetic number of a graph having more 
than one vertex of degree n – 1. 
 

2.5 Theorem. If G has more than one vertex of degree n – 1, then every edge 
geodetic cover contains all those vertices of degree n – 1. 
 

2.6 Theorem.  For any graph G with at least two vertices of degree n – 1, 
ge(G) = n. 
 

2.7 Theorem. For positive integers r, d and l ≥ 2 with  r < d ≤  2r, there exists 
a connected graph G with rad G = r, diam G = d, ge(G) = l. 
 

3. Constructions of Graphs with the Specified Edge Geodetic Numbers
 From the previous sections, we can construct some graphs which have 
the specified edge geodetic numbers. 
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3.1 Graphs with the given the edge geodetic numbers  
 For any positive integer l ≥ 2 , the graphs with the (d + r + l – 2) 
vertices have the edge geodetic number ge(G) = l where r ≤ d ≤ 2r is as 
follows: 
 
 
 
 
 
 
 
 
3.2 Graphs with the edge geodetic number 2 
(1) For the edge geodetic number ge(G) = 2, the graph is stated below. 
 
 
 
 
 
 
 
(2)  For the pathPn with n vertices, the edge geodetic number is ge(Pn) = 2. 
 
 
 
 
 

ud – r – 1 vr + 1 

v2r 

wl– 2  v2 
Figuer. 1 

u1 

w2 
w1 

u0 ud – r 

G: 

u2 

G: v6 v5 

Figure. 2 

u1 u0 v4 

v3 v2 

Figure. 3 

Pn: vn vn– 1 v1 v2 
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(3)  For the even cycle C2nwith 2n vertices, the edge geodetic number is 
ge(C2n) = 2. 
 
 
 
 
 
 
 
 
 
 
 
(4)  The cube Qn with n vertices has the edge geodetic number is ge(Qn) = 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

C2n: 
v2n 

v1 

v2 

vn + 1 
Figure. 4 

Q2: 
Q3: 101 

11 10 

01 00 
100 

111 
011 010 

001 000 

110 Figure. 5 
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3.3 Graphs with n vertices having the edge geodetic numbern – 1  
(1)  The star with n vertices, say K1,n – 1 has the edge geodetic number n – 1. 
 
 
  
 
 
 
 
 

(2)  The wheel with n vertices, say W1,n – 1 has the edge geodetic number n – 1. 
 
 
 
 
 
 
 
 
3.4 Graphs with n vertices having the edge geodetic number n 
(1) The complete graph, Kn has the edge geodetic number n. 
 
 
 
 
 
 

vn 

v1 v2 vn – 1 

Figure. 6 

v2 v1 vn – 1 

vn 

Figure. 7 

v2 K2: v1 

Figure. 8 
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mth LEVEL HARMONIC NUMBERS 
 

Aung Phone Maw1 and Aung Kyaw2 
 

Abstract 
We define mth level harmonic numbers as a generalization of harmonic 
numbers.  Then we construct the table of mth level harmonic numbers which 
is like the Pascal’s triangle. A formula for mth level harmonic numbers 
containing binomial coefficients, as a generalization of Euler’s formula for 
harmonic numbers, is also presented. From this formula, we also derive 
some relations between harmonic numbers and binomial coefficient. 

 
mth Level Harmonic Numbers 

For a positive integer n, a harmonic number Hn is defined as 
1

1n
n

k
H k

 . Here 
we define mth level harmonic number as follows: 

(0) 1nH  ; ( ) ( 1)
1

1nm m
n k

k
H Hk




  for any positive integer m. 

Since (0) (1)
1 1 1

1 1 11n n n
n k n

k k k
H H Hk k k  

       , one can see that mth level 
harmonic number is a generalization of a harmonic number. 
 

Table of mth Level Harmonic Numbers  
From the definition of mth level harmonic number, (0) 1nH   and ( )

1 1mH  . For 
every 2n   we have 
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( ) ( 1)
1
1 ( 1) ( 1)
1

( ) ( ) ( 1)
1

1

1 1

1

nm m
n k

k
n m m

k n
k

m m m
n n n

H Hk
H Hk n

H H Hn



  





 
 


  

From these facts we can construct the table of mth level harmonic numbers like 
Pascal’s triangle as follows: 
 
 
 
 
 
 
 

In the above table, ( )m
nH  can be calculated as   

( )
1

1
( 1) ( )

m
n

m mnn n

H

H H








. 

 
mth Level Harmonic Numbers and Binomial Coefficients 

Euler’s formula for harmonic numbers containing binomial coefficients is 
(1) 1

1
1( 1)n k

n n
k

nH H kk



       . 

We will show that  
( ) 1

1
1( 1)nm k

n mk

nH kk



      , 

              m 
  n 0 1 2 3 4 

1 1 1 1 1 1 
2 1 3

2  7
4  15

8  31
16  

  3 1 11
6  85

36  575
216  1387

491  
  4 1 25

12  415
144  5845

1728  12456839
3393792  

+ 
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this formula can be seen as a generalization of Euler’s formula for harmonic 
numbers. 
Proof.  We will prove by induction.  
When 1n ,   


 1

1
1)(

1
11)1(1

k m
km

kkH . 
 
When 0m  , 1)0( nH  and 

 1 1
01

1( 1) ( 1) 11 2 3 4
n k n

k

n n n n n n
k nk

 


                                           .  

Therefore (0) 1
01

1( 1)n k
n

k

nH kk



      . 

 Now we will show that the formula is true for ( )m
nH , 1,2  mn , by  

assuming that the formula is true for )(
1

m
nH   and )1( m

nH . Since 
( ) ( ) ( 1)

1
1m m m

n n nH H Hn
  , then 

( ) ( ) ( 1)
1

1 1 1
11 1

1 11 1 1
1 11 1

1 1 1
1

1
11 1 1( 1) ( 1)

1 1 1( 1) ( 1) 1 ( 1)
1 ( ) 1( 1) ( 1)

m m m
n n n

n nk k
m mk k

n nk n k
m m mk k

n k n
mk

H H Hn
n n

k kk n k
n nn k
k kk n n n n k

nn k k
kk n


  

 
   

  
  


 
            
                 

       

 
 


1 1 1
1

( ) 1
1

1 1( 1) ( 1)
1( 1)

m

n k n
m mk

nm k
n mk

n
n
kk n
nH kk

  





      
     



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Harmonic Numbers and Binomial Coefficients 

From the formula ( ) 1
1

1( 1)nm k
n mk

nH kk



      , one can derive some relations 

between harmonic numbers and binomial coefficient as follows: 
(2) 1

21 1
1 1 ( 1)n n k

k n
k k

nH H kk k


 
         

(2) (3) 1
31 1 1 1

1 1 1 1( ) ( 1)k

n k n n k
i n

k i k k

nH H H kk i k k


   
            

1
1 31 1 1 1

1 1 1 1( ) ( ) ( 1)n n k n k
k n k i

k k i k

nH H H H kk k i k
   
           . 

Other formulas involving harmonic numbers and binomial coefficients 
can be found in [1, 2, 3] and others. 
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DECOMPOSITION OF COMPLEX VECTOR SPACE Cn 
INTO INVARIANT SUBSPACES  

Myint Myint Maw* 
Abstract  

This paper study the existence of eigenvalue for every linear 
operator on a finite-dimensional complex vector space. In this paper, we 
will discuss although eigenvectors corresponding to distinct eigenvalues are 
linearly independent, they can not span the complex vector space. Then we 
give decomposition of complex vector space Cn into generalized 
eigenspaces and Jordan subspaces.  
Keywords: Invariant subspace, Jordan chain, Generalized eigenspace, 

Jordan subspace  
 
1. Eigenvalues and eigenvectors 
 Throughout the paper, V denotes n-dimensional complex vector space. 
 

1.1 Definition. Let A :VV be a linear operator. A subspace MV is called 
invariant for the linear operator A, or A-invariant, if AxM for every vector 
xM.  
Trivial examples of invariant subspaces are {0},V, Ker A = {xV | Ax = 0} 
and  
Im A = {Ax | xV}.  
 

1.2 Definition.  Let A: VV be a linear operator. A number C is called 
an eigenvalue of A if there exists xV such that x 0 and Ax = x. The vector 
x is called an eigenvector of A corresponding to .  
 

1.3 Theorem.  Let A :VV be a linear operator and C. Then the following 
are equivalent:  

(a)  is an eigenvalue of A.  
 (b)  A – I is not injective. 
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 (c) A – I is not surjective.  
 (d) A – I is not invertible.  
Proof.  is an eigenvalue of  A   vV such that v 0 and Av = v.  
    (A – I) v = 0 
    A – I is not injective. 
Thus conditions (a) and (b) are equivalent.  
Clearly conditions (b), (c) and (d) are equivalent.  
 

1.4 Theorem.  Every linear operator on a finite-dimensional complex vector 
space has an eigenvalue.  
Proof. To show that A has an eigenvalvue, choose a non-zero vector vV. We 
consider the n + 1 vectors v, Av, A2v, …,An v. Since the dimension of V is n, v, 
Av, A2v, …,An v are not linearly independent.  
Thus there exist complex numbers a0, a1, …,an, not all zero such that a0v + a1v 
+ … + anAnv = 0.  
Make the a’s the coefficients of a polynomial, by the Fundamental Theorem 
of Linear Algebra which can be written in factored form as  

a0 + a1z + … + anzn = c (z – 1) … (z – m), mn 
wherem is largest positive integer such that am 0, c is a non-zero complex 
number, each j is complex and equation holds for all complex z. We then 
have  
  a0v + aiAv + … + anAnv = 0 
  (a0I + a1A + … + an An)v = 0 
  (c(A – 1I) … (A – mI)) v = 0.  
We know that the composition of injective mappings is injective and v 0. 
Thus A – jI is not injective for at least one j. In other words, A has an 
eigenvalue.  
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1.5 Proposition. Non-zero eigenvectors corresponding to distinct eigenvalues 
of A are linearly independent.  
Proof. Suppose that 1, …,m are distinct eigenvalues of A and v1, …, vm are 
corresponding non-zero eigenvectors. We need to prove that v1, …,vm are 
linearly independent. Suppose that a1, …,am are complex numbers such that 
a1v1 + … + amvm = 0. Apply the linear operator (A – 2I) (A – 3I) … (A – mI) 
to both sides of the equation above,  

((A – 2I) (A – mI) … (A – m I) (a1v1 + … + amvm) = 0.  
Since we have (A – j I) vj = 0,  j = 1,2, …, m and two polynomials in the 
same linear operator are commute, then we have  

((A – 2I) (A – 3I) … (A – mI) (a1v1) = 0.  
But (A – jI) v1= Av1 – j (Iv1) = 1v1 – jv1 = (1 – j)v1 for  j 1.  
Thus a1 (1 – 2) (1 – 3) … (1 – m) v1 = 0. Since ’s are distinct 
eigenvalues and v1 is non-zero eigenvector, we get a1 = 0. In a similar fashion, 
aj = 0 for each j.  
 

1.6 Definition.  Suppose A :VV and C. The eigenspace of A 
corresponding to , denote by E(, A), is defined by E(, A) = Ker (A– I).  
 

1.7 Theorem. Suppose V is finite-dimensional and A: VV. Suppose also that  
1 , …, m are distinct eigenvalues of A. Then E(1, A) + … + E(m, A) is a 
direct sum and dim E(1, A) + … + dim E(m, A)  dim V. 
Proof. We know that the null space of each linear mapping on V is a subspace 
of V. 
Thus E(1, A) + … + E(m, A) is a subspace of V. 
Take any xE(1, A) E(j, A)  for ij.  
So (A– iI)x = 0 and (A– jI) x = 0.  
Ax = i xand Ax = jx  this implies that i x = j x  so  (i– j)x = 0.  



96               J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 

Since ’s are different, we get x = 0. Thus E(1, A) + … + E(m, A) is a direct 
sum of V.  
Hence dim(E(1, A)+…+E(m, A)) = dim E(1, A) +…+ dim E(m,A)  dim V.  
 

1.8 Remark.  Non-zero eigenvectors corresponding to distinct eigenvalues of 
A need not span V.  
 

1.9 Example. The linear operator A :C2C2defined by A(w, z) = (z, 0).  
 (w, z) (0, 0) and  0 in C,  (w, z)  (z, 0). 
Thus to get A(w, z) =  (w, z),  = 0 is forced, and so 0 is only eigenvalue of 
A. The set of eigenvectors corresponding 0 is {(w, 0) C2) | wC} it is one 
dimensional subspace of C2. Clearly (w, 0) cannot span C2. 
 

2. Generalized Eigenspaces 
2.1 Definition.  Let  be an eigenvalue of a linear operator A : C nC n. A 
chain of vectors x0, x1, …,xk is called Jordan chain of A corresponding to  if 
x0 0 and the following relation hold: 
  Ax0 = x0 
  Ax1 – x1 = x0 
(1)    Ax2 – x2 = x1 
   ⋮ 
  Axk – xk = xk–1 
x0 is an eigenvector of A corresponding to . The vectors x1, …, xk are called 
generalized eigenvectors of A corresponding to the eigenvalue  and 
eigenvector x0.  
Equation 2.1(1) can be written (A–I)x0 = 0,(A – I) x1= x0,…, (A–I)xk = xk–1.  
So (A – I)x0 = 0, (A – I)2x1 = 0, (A – I)3x2 = 0, …, (A – I)k+1xk = 0. Thus 
we way calculate a Jordan chain into the form (A – I)kxk, (A – I)k–1xk, …,   
(A – I) xk, xk.  
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2.2 Definition.  The subspace Ker (A – I) p, integer p 1 is called the 
generalized eigenspace of A corresponding to eigenvalue  of A if Ker                  
(A – I)i= Ker (A – I)p for all integer i>p and is denoted by R (A). So                           
R (A) = Ker (A – I) p is the biggest subspace in (1). Since  pn we also have 
R (A) = {xCn | (A – I)nx = 0} = Ker (A – I)n.  
 

2.3 Proposition.  The generalized eigenspace R (A) contains the vectors from 
any Jordan chain of A corresponding to  and R(A) is A-invariant.  
Proof. Let x0, …,xk be a Jordan chain of A corresponding to . Then  
  (A – I)k+1xk = (A – I)k (A – I) xk 
   = (A – I)kxk–1 = (A – I)k–1xk–2 
   ⋮ 
   = (A – I) x0 
   = 0.  
Hence  xiR (A),  i = 0, …, k.  
If  x Ker (A – I)n, then (A – I)nx = 0.  
Thus (A – I)n (Ax) = A((A – I)nx) = A0 = 0.  
Hence  R (A) = Ker (A – I)n is A-invariant.  
2.4 Lemma.  For any eigenvalue  of A, then (the restriction linear operator of 
A on R (A)), ( )|R AA   has only one eigenvalue .  
Proof. Let   be eigenvalue of ( )|R AA  .  
Then there exists nonzero eigenvector  xR(A) such that  Ax= x. Then  
(A – I) x = x – x = ( – ) x 
(A – I)2x = (A – I) ( – )x = ( – )( – )x = ( – )2x and so on, thus 
we have (A – I)kx = ( – )kx  for each positive integer k. Since  x is 
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generalized eigenvector of A corresponding , for some l, then ( – )l= 0, 
thus we have   = .  
 

2.5 Lemma.  If  A : CnCn be a linear operator, then non zero generalized 
eigenvectors corresponding to distinct eigenvalues of A are linearly 
independent.  
Proof.  Suppose  1, …, m are distinct eigenvalues of  A and v1, …, vm are 
corresponding non zero generalized eigenvectors. Suppose  
(1)   a1v1 + … + am vm = 0  for some scalars  a1, …, am.  
Let  k be the largest non negative integer such that (A – 1I)kv1 0 and                
(A – 1I)kv1 = w. Thus (A – 1I) w = (A – 1I)k+1v1 = 0 and hence Aw = 1w. 
Thus (A – I) w = 1w – w= (1 – )w, C. So (A – I)nw = (1 – )nw, 
C, where n = dim Cn. Apply the linear operator  
 (A – 1I)k (A – 2I)n … (A – mI)n to (1) 
 (A – 1I)k (A – 2I)n … (A – mI)n (a1v1 + … + am vm) = 0 
 a1 (A – 1I)k (A – 2I)n … (A – mI)nv1 = 0 
 a1 (A – 2I)n… (A – m I)nw = 0 
 a1 (1 – 2)n… (1 – m)nw = 0.  
This implies that a1 = 0. In a similar fashion aj = 0 for each  j. Thus  v1, …, vm 
are linearly independent.  
 

2.6 Lemma.  Given a linear operator  A : CnCn with an eigenvalue  , let q 
be a positive integer for which Ker (A - I)q= R(R). Then the subspace Ker (A 
– I)q and Im (A – I)q are direct complements to each other in Cn.  
Proof.  Since dim Ker (A – I)q + dim Im (A – I)q= n, we have only to check 
that  Ker (A – I)q Im (A – I)q = {0}.  
For a contradiction, assume that  x Ker (A – I)q Im (A – I)q, x 0.  
Then  x = (A – I)q y, for some y and (A – I)r x = 0 and (A – I)r–1x 0 for 
some integer r 1. Thus (A – I)q+r y = 0 and (A – I)q+r–1y 0. So Ker               
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(A – I)q+r Ker (A – I)q+r–1. This contradicts to definition of generalized 
eigenspace.  
 

2.7 Theorem.  Let  1, …, r be all the different eigenvalues of a linear 
operator A : CnCn. Then Cn decomposes into the direct sum 

1 ( ) ( ).r
nC R A R A     

Proof.  For n = 1. let  be an eigenvalue of A, then there exists  v 0  in Cn 
such that Av = v. Since {v} is a basic of Cn, for each  nx C (A – I)x                                           
= (A– I)v  for some C. So we have  (A – I)x = v – v = 0. Then 
xR (A). Thus ( ).nC R A  
Let n> 1. Assume that the result holds for dimensions k = 1, 2, …, n – 1.  
Consider the eigenvalue 1.  
Cn = Ker (A – 1I)n + Im (A – 1I)n = 1 ( ) .R A U   We know that Im (A – 1I)n 
= U is A-invariant. Since 1 ( ) 0R A  , we have dim U<n. By Proposition 2.3, 
there does not exist generalized eigenvectors of |UA  corresponding to the 
eigenvalue 1. Thus each eigenvalue of |UA corresponding to the eigenvalue 
1. Thus each eigenvalue of |UA  is in {2, …,r}. By induction hypothesis 

2 ( | ) ( | ).rU UU R A R A     Thus 1 2( ) ( | ) ( | ).r
n U UC R A R A R A       

So we show that ( ) ( | )k k UR A R A   for k = 2, …,m. Take a fixed integer         
k {2, …, m} and clearly ( | ) ( ).k kUR A R A   Assume ( | ) ( ).k kUR A R A   
Then there exists ( )kv R A  but ( | ).k Uv R A  So we get ( | )j Uv R A  for 
some  jk and hence  ( ).jv R A  Thus ( ) ( ).k jv R A R A    This contradicts 
to lemma 2.5. So ( ) ( | ).k k UR A R A   Thus 1 ( ) ( ).r

nC R A R A     
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1 ( )R A

2 ( )R A

1 ( )R A

2 ( )R A

3 ( )R A 3 ( )R A

Figure 1 
 
3.  Jordan Subspaces 
3.1 Definition. An A-invariant subspace M is called a Jordan subspace 
corresponding the eigenvalue  0  of A if M is spanned by the vectors of some 
Jordan chain of A corresponding to 0.  
 

3.2 Proposition. Let A : CnCn be a linear operator. Let x0, x1, …, xk be a 
Jordan chain of a linear operator A corresponding to 0. Then the subspace     
M = Span {x0, …, xk} is A-variant.  
Proof.  We have Ax0 = 0x0M where 0 is the eigenvalue of A and for  i = 1, 
…, k, Axi = 0xi + xi–1M. Hence M is A-invariant.  
 
3.3 Theorem. Let  A : CnCn be a linear operator. Then there exists a 
direct sum decomposition 
(1)   Cn = M1 + … + Mp 
where Mi is a Jordan subspace of A corresponding to an eigenvalue                           
i (1, …, p are not necessarily different).  
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Proof.  Assume A has only one eigenvalue 0, (possibly with there are more 
one eigenvalue, all equal to 0).  
Let Yj = Ker (A – 0I)j,  j = 1, 2, …, m, where m is chosen Ym = 0 ( )R A  and 

01 ( ).mY R A   So Y1Y2 … Ym. Let ( )(1) , , mtm mx x  is a basis of Ym modulo 
Ym–1. So ( )(1) , , mtm mx x  are linearly independent in set Ym such that  
(2)   ( )(1)1 Span { , , }mtm m m mY x x Y    (the sum is here direct) 
Claim that the mtm vectors ( )(1)0 0( ) , , ( ) , 0, , 1mtk km mA I x A I x k m       
are linearly independent. Let  
(3)  1 ( )0

0 1
( ) 0,mtm k iik m ik

k i
A I x C  

 
   . 

Apply (A – 0I)m–1 and use the property ( )0( ) 0,m imA I x   for  i = 1, …, tm.  

Thus 1 ( )0 0
1

( ) 0.mtm ii m
i

A I x 


         So ( )0 1
1

.mt ii m m
i

x Y 
  

By 3.3(2), ( ) (1)0 1
1

Span { , , }m
m

t tii m m m m
i

x Y x x 
    and so 10 0 0.mt     

Apply (A – 0I)m–2 to 3.3(3) we show similarly that  11 1 0mt     and so 
on.  
We put  M1 = Span (1)0{( ) , 0, , 1}k mA I x k m    
  M2 = Span (2)0{( ) , 0, , 1}k mA I x k m    
   ⋮ 
  mtM  = Span ( )0{( ) , 0, , 1}.mtk mA I x k m     



102               J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 

Since {0}i jM M  for  ij, then the sum M1 + M2 + … + mtM is direct. Now 
consider the linear independent vectors ( ) ( )01 ( ) ,i immx A I x   i = 1, …,tm. 
Claim that  
(4)   ( )(1) (2)2 1 1 1 Span { , , , } {0}.mtm m m mY x x x      

Let ( ) 21
1

, .mt ii m im
i

x Y C 
   Apply (A – 0I)m–2 to the left-hand side, we get 

2 ( )0 0
1

( ) ( ) 0,mtm ii m
i

A I A I x  


    So 1 ( )0
1

( ) 0,mtm ii m
i

A I x 


   which 
implies 1 0.mt     So the equation 3.3(4) follows. Assume that 

( )(1)2 11 1Span { , , } .mtm mm mY x x Y     Then there exist vectors 
1( 1) ( ) 11 1, ,m m mt t t mm mx x Y      such that 1( )1 1{ }m mt tim ix    is linearly independent 

and  
(5)   1( )(1)2 11 1Span { , , } .m mt tm mm mY x x Y     
Applying previous argument to 3.3(5) as with 3.3(2), we fine that the vectors 

1( )(1)0 01 1( ) , ,( ) , 0, , 2m mt tk km mA I x A I x k m         are linearly independent. 
Now let  1mtM  = ( 1)0 1Span {( ) , 0, , 2}mtk mA I x k m     
  ⋮ 
 1m mt tM  = 1( )0 1Span {( ) , 0, , 2}m mt tk mA I x k m    . 
If ( )(1)2 11 1Span{ , , }mtm mm mY x x Y    , then tm-1 = 0.  
At the next step put ( ) ( )0 12 1( ) , 1, ,i i m mm mx A I x i t t       and show similarly 
that ( )3 12Span{ , 1, , } {0}.im m mmY x i t t      
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Assume that that ( )3 1 22Span{ , 1, , } ,im m m mmY x i t t Y       then there exist 
vectors ( ) 2 1 1 22 , 1, ,i m m m m m mmx Y i t t t t t           such that 

( ) 1 22 , 1, ,i m m mmx i t t t      are linearly independent and 
( )3 1 2 22Span { , 1, , } .im m m m mmY x i t t t Y         

We continue this process of construction of Mi, i = 1, …,p where 
1 1.m mp t t t     

The construction shows that each Mi is Jordan subspace of A and M1 + … + 
Mp is a direct sum. Also 01 ( ) .npM M R A C     

1R (A)

3R (A)
3R (A)

1R (A)

2R (A)2R (A)

 Figure. 2 
3.4 Example.  Let us consider the matrix 

2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

         

A  

 5(2 )  A I   
 = 2, 2, 2, 2, 2 are eigenvalues of A. 
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1 1 1 2 4 1 2( 2 ) { | ,   Y Ker A I e e    are scalars} 

22 1 1 2 2 3 4 4 5 1 2 3 4( 2 ) { | , , ,     Y Ker A I e e e e        are scalars} 
33 1 1 2 2 3 3 4 4 5 5 1 2 3 4 5( 2 ) { | , ,        Y Ker A I e e e e e           are scalars} 

 51 2 3 2 ( )   Y Y Y R A C  
e3 is a basis of Y3 modulo Y2 such that 
 Y2 + span {e3} = Y3 
Jordan subspace 21 3 3 3 1 2 3Span{ 2 ) , ( 2 ) , } { , , }   M A I e A I e e Span e e e  
 3 2 2( 2 )  A I e e Y  
 1 3 2Span{( 2 ) }  Y A I e Y  
 5 2 e Y such that {e2 , e5} is linearly independent set. 
Jordan subspace M2= Span 5 5 4 5{( 2 ) , } { , } A I e e Span e e  
 51 2 2 3( )   M M R A C Y  

 
Figure. 3 

2 2

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

2 ,( 2 ) ,( 2 )0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                             

A I A I A I
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EIGENVALUES OF SOME COMPOSITE GRAPHS 
 

Zaw Win1 and Aung Kyaw2 
 

Abstract 
 Kn is a complete graph with n vertices. ( )m

nK  is a graph containing 
m copies of Kn with each vertex of a Kn is only adjacent to a vertex of each 
of the other Kn. 
We will show that the adjacency matrix of ( )m

nK  has 
(i) (n – 1)(m – 1) eigenvalues of  –2 
(ii) m – 1 eigenvalues of  n – 2 
(iii) n – 1 eigenvalues of  m – 2 
(iv) an eigenvalue of  n + m – 2. 

 
Composite Graph ( )m

nK  and Its Adjacency Matrix 
Kn is a complete graph with n vertices. ( )m

nK  is a graph containing m copies of 
Kn with each vertex of a Kn is only adjacent to a vertex of each of the other Kn. 
(See figure 1 for (4)

3K ) 

 
Figure 1. (4)

3K  
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Basic definitions and notations on graphs and their eigenvalues can be found 
in [1, 2, 3] and others.  
The adjacency matrix of ( )m

nK  is like as follow: 
n n n n

n n n n
n n n n
n n n n
n n n n n

K I I I
I K I I
I I K I
I I I I
I I I I K

        









 

For example, adjacency matrix of (4)
3K  is 

0 1 1 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 1 0
1 1 0 0 0 1 0 0 1 0 0 1
1 0 0 0 1 1 1 0 0 1 0 0
0 1 0 1 0 1 0 1 0 0 1 0
0 0 1 1 1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 1 1 1 0 0
0 1 0 0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 1 1 0 0 0 1
1 0 0 1 0 0 1 0 0 0 1 1
0 1 0 0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 0 1 1 1 0

                   

 

Since adjacency matrix 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1
1 1 1 1 0

        









 of Kn is like as 
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

K I I I
I K I I
I I K I
I I I I
I I I K

        











,  

( )m
nK  can be seen as a generalization of complete graphs. 
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Eigenvalues and Eigenvectors of Adjacency Matrix of ( )m
nK  

The adjacency matrix of ( )m
nK  has 

(i) (n – 1)(m – 1) eigenvalues of  –2 
(ii) m – 1 eigenvalues of  n – 2 
(iii) n – 1 eigenvalues of  m – 2 
(iv) an eigenvalue of  n + m – 2. 
By using each of the eigenvectors shown in figure 2, one can check that 

there are (n – 1)(m – 1) eigenvalues of  –2. 
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1
1

0
0

0
0
1

1
0
0

0
0
0
0
0
0

0
0

0
0
0
0

0
0

                                             











1
1

0
0

0
0
0
0
0
0

0
0
1

1
0
0

0
0

0
0
0
0

0
0

                                             











…

1
1

0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0

1
1
0
0

0
0
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Figure 2. (n – 1)(m – 1) eigenvectors of  eigenvalue  2 
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                                      (a)                                     (b)                                     (c) 
Figure 3. (a) m – 1 eigenvectors of  eigenvalue n – 2;  

(b) n – 1 eigenvectors of  eigenvalue m – 2; (c)  an eigenvector of eigenvalue 
n + m – 2. 

 According to eigenvectors shown in figure 3, there are m–1 eigenvalues 
of  n – 2, n – 1 eigenvalues of  m – 2 and an eigenvalue of  n + m – 2. 
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Abstract 
Graph databases have a long academic tradition. At the heart of 

any graph database lies an efficient representation of entities and 
relationships between them. All graph database models have, as their formal 
foundation, variations on the basic mathematical definition of a graph, for 
example, directed or undirected graphs, labeled or unlabeled edges and 
nodes, hypergraphs, and hypernodes. More recently, semantic relations 
have become a major theme of interest of Computational Linguistics. 
Semantic relations among words have captured the interest of various 
brands of philosophers, cognitive psychologists, linguists, early childhood 
and second language educators, computer scientists, literary theorists, 
cognitive neuroscientists, psychoanalysts - investigators from just about any 
field whose interests involve words, meaning or the mind. The Pāḷi Canon is 
the complete scripture collection of the Theravāda school. Buddhist monks 
and scholars studied the Pāḷi language mainly to gain access to the Buddhist 
Canon and many religious works were written using the Pāḷi language. The 
objective of this study is to support for new Buddhist vocabulary learner to 
alternative view by using graph database, Neo4j. 
Keywords: graph database, semantic relations, Neo4j, Pāḷi, Buddhist 

Vocabulary 
Introduction 

 Semantics is the study of the relationship between the linguistics forms 
and entities in the world, that is, how words literally connect to things 
(meaning). It is a major branch of linguistics devoted to the study of meaning 
in language. In many research fields such as linguistics, cognitive science, 
psychology, artificial intelligence, biomedicine and information retrieval, 
computing semantic similarity/relatedness between concepts or words is 
considered as an important issue. More recently, semantic relations have 
become a major theme of interest of Computational Linguistics, as they 
present a convenient and natural way to organize huge amounts of lexical data 
in ontologies, Word Nets and other machine-readable lexical resources. 
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Semantic relations may reflect relations in language including relations 
between objects and their symbols. Semantic relations can refer to relations 
between concepts in the mind (called conceptual relations), or relations 
between words (lexical relations) or text segments. Different domains develop 
continuously new kinds of semantic relations. Some kind of semantic 
relationships that exist in words of natural language have always been a 
challenge in the Fields of Natural Language Processing (NLP) and 
Information Retrieval (IR). When a word level semantic relation requires 
exploration, there are many potential types of relations that can be considered: 
synonym, antonym, homonym, polysemy, hyponym, meronym, etc. Semantic 
relations are fixed manually in various linguistic resources, such as thesauri, 
ontologies, and synonym dictionaries. 
The relationships between words can be summarized briefly as follows: 
Synonym : The notion that more than one linguistic form can be said to 

have the same  conceptual or propositional meaning. 
  e.g., Nibbāna and Mokkha 
Antonym : The notion of semantic oppositeness.  
  e.g., Amitta and mitta 
Hyponym : Refers to a relationship existing between specific and general 

lexical items: the meaning of the specific item is included in, 
and by, the meaning of the more general item. 

  e.g.,  sunakha is a hyponym of tiricchāna. 
Meronym : Refers to a part-whole relation. 
  e.g., Rukkha and Phala 
 The limitations of traditional databases, in particular the relational 
model, to cover the requirements of current application domains, has lead the 
development of new technologies called Graph Databases, which are oriented 
to store graph-like data. Recently the area is gaining attention because in 
trendy projects where a database is needed (for example chemistry, biology, 
Web Mining and semantic Web), the importance of the information relies on 
the relations more or equal than on the entities. Moreover, the continued 
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emergence and increase of massive and complex graph-like data makes a 
graph database a crucial requirement. This renascence is showed by the 
availability of several graph databases systems. 
 With the needs to manage large and sparse datasets, with many kinds 
of relationships between them, new kinds of Database have been developed to 
supply it with a performance and capability better than the traditional 
databases technologies and queries languages. Many of these new kinds of 
Databases using graph structures like the main engine to allow to user to 
insert, update, query, delete and apply analysis techniques based in graphs in 
the networks of graphs. 
 Graph Database is a database system where the associations between 
objects or entities are similarly as important as the objects themselves. In a 
graph database, data are represented by nodes, edges and properties. Nodes 
are represented as objects and edges manifest the relationship between nodes. 
There are several implementations of graphical database. Both nodes and 
edges can have properties that illustrate their particular characteristics. 
 Graph databases are especially suited for highly connected data.  
Today, general-purpose graph databases are a reality, allowing mainstream 
users to experience the benefits of connected data without having to invest in 
building their own graph infrastructure. Today, there are many graph 
databases such as Allegro Graph, DEX/Sparkee, Hypergraph DB, Infinite 
Graph, Neo4J, Orient DB, Info Grid, Vertex DB, Flock DB, Graph DB etc.  

An Overview of Neo4j Graph Database 
 Neo4j is the world's leading graph database. Neo4j is a high 
performance graph store with all the features expected of a mature and robust 
database, like a friendly query language and ACID transactions.  
 Neo4j is a graph database, which means that it does not use tables and 
rows to represent data logically; instead, it uses nodes and relationships. Both 
nodes and relationships can have a number of properties. While relationships 
must have one direction and one type, nodes can have a number of labels. The 
programmer works with a flexible network structure of nodes and 
relationships rather than static tables. For many applications, Neo4j offers 
orders of magnitude performance benefits compared to relational databases. 
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Neo4j is based on a network oriented model where relations are first class 
objects.  

The most popular variant of graph model is the property graph. 
Property graphs are attributed, labeled, directed multi-graphs. The property 
graph balances simplicity and expressiveness. Property graphs sacrifice some 
graph purity for pragmatism by grouping properties into nodes, thereby 
making them easier to work with.  The main abstractions in a property graph 
are nodes, relationships and properties. Neo4j uses Cypher Query Languages 
for property graphs. A Property graph has the following characteristics: 

 It contains nodes and relationships  
 Nodes contain properties  
 Relationships are named, directed and always have a start and  

end node 
 Relationships can also contain properties 

Most people find the property graph model intuitive and easy to understand. 
 Neo4j has many features. The main feature is that neo4j not depend 
heavily on index because it supplies a natural adjacency by the graph. It is 
easy to write queries about relationships with many types of deep. 
The Cypher Query Language in Neo4j 
 Cypher is a declarative graph query language that allows for 
expressive and efficient querying and updating of the graph store. Cypher is 
designed to be a humane query language, suitable for both developers and 
operations professionals who want to make ad hoc queries on the database. 
Cypher is a database expressive and compact query language. It is primarily 
used in Neo4j, although it can also be used to programmatically describe 
graphs in a precise manner due to its close affinity to graphs. It is easy to learn 
and understand since it follows the way humans intuitively describe graphs 
using diagrams. Cypher is a relatively simple but still very powerful language. 
Very complicated database queries can easily be expressed through Cypher. 
Like most query languages, Cypher is composed of clauses. A reasonably 
simple query is made up of START, MATCH and RETURN clauses. 
 The some clauses of Cypher are: 
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create(a:TheBuddha{name: 'Buddha', meaning: 'Supreme Man', PoS: 'Noun', Reference: 'Pāḷi Canon'})   

 START – specifies one or more starting points – nodes or relationships – in a 
graph, which are obtained via index lookup (starting points are rarely 
accessed via IDs).  

 MATCH – it makes use of the relationships  
 RETURN – returns nodes and relationships that match the criteria  
 WHERE – acts as a filter pattern for matching results 
 CREATE or CREATE UNIQUE – creates (unique) nodes and relationships  
 DELETE – removes nodes, relationships or properties  
 SET – sets property values  
 UNION – merges results from two or more queries  
 WITH – chains subsequent query results and pipelines results  

 
The Operations of Neo4j Graph Database 
 Neo4j has CRUD operations. They are Create, Read, Update, and Delete. 
CREATE Operation 
 Create operation is used to create nodes and relationships. 
 e.g., Creating a node 
  
  
 
Create clauses can create nodes and relationships.( ) parenthesis is to indicate 
a node. In a:TheBuddha, 'a' is variable  andThe Buddhais label for the new 
node. {} bracket can be used to add properties to the node. 
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create (a:The Enlightened One {name: "Buddha", meaning: "Supreme Man", PoS:"Noun", Reference: "PāḷiCanon"}), (b:The Enlightened One{name:" Dasabala", meaning:"Ten powers of Buddha", PoS: "Noun", Reference: "Pāḷi Canon"}), (c:The EnlightenedOne {name:"Satthā", meaning:"A Supreme teacher", PoS:"Noun", Reference: "PājikakaṇdaPāḷi"}), etc.,  

Result in console:  

 
 
-Creating multiple nodes  
 
 
 
 

In the following table, there are some of the epithets of the Buddha and 
its properties. 
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Table 1. The epithets of the Buddha and its properties. 
 
 

 
 
 
 
 
 
 
 
 
  

Name Meaning PoS Reference 
Dasabala Ten powers of Buddha Noun Pāḷi Canon 
Satthā A Supreme teacher Noun PārājikakaṇdaPāḷi 
Sabbaññū All-Knowing Noun Theragāthāand 

MajjhimapaṇṇāsaPāḷi 
Dvipaduttama The best of Men Noun Buddhavaṁsa 
Muninda The chief of monks Noun ApadānaPāḷi 
Bhagavā The Blessed One Noun PārājikakaṇdaAṭṭhakathā 
Nātha Protector Noun three piṭakas 
Cakkhumā Having eyes Noun Pāḷi Canon 
Muni Monk Noun Pāḷi Canon 
Lokanātha TheRefuge of the human beings Noun Suttapiṭaka 
Anadhivara There is no one who is superior 

to oneself Noun Buddhavṁsa 
Mahesi The Great Sage Noun Pāḷi Canon 
Vināyaka One who admonishes the living 

beings Noun Sutta and VinayaPiṭakas 
Samantacakkhu All-Seeing Noun Pāḷi Canon 
Sugata Meritorious  act Noun Five Nikāyas 
Bhūripañña abundant knowledge as the earth Noun Majjhimapaṇṇāsa 
Maraji Supreme Man Noun Pāḷi Canon 
Narasīha The Noble Man Noun TheragāthāPāḷi 
Naravara The Noble Man Noun TheragāthāPāḷi 
Dhammarājā The King of righteousness Noun Theragāthā 
Mahāmuni The Great Sage Noun Suttaand VinayaPiṭakas 
Devadeva The God of gods Noun Theragāthā and 

ApadānaPāḷi 
Lokagaru 

The One who is a teacher 
deserving the special veneration 
of human beings 

Noun SakulātherīApadāna 
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create 
 (a)-[:synonym_of]->(b),(a)-[:synonym_of]->(c),(a)-[:synonym_of]->(d), 
 (a)-[:synonym_of]->(e),(a)-[:synonym_of]->(f),(a)-[:synonym_of]->(g) 

 

Result with graph view for creation of multiple nodes; 

 
-Creation of relationships 
These are coding  for relationships which are created after the creation of 
nodes' codes under the following: 
 
 
 
 
In Relationships, Cypher uses a pair of dashes (--) to represent undirected 
relationship. Directed relationships have an arrow head at one end          
(eg.,<-- , --> ). Bracketed expression may include types of relationships, 
properties, and attributes. 
Result with graph view for creation of relationships between nodes; 
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MATCH (n:TheEnlightenedOne) WHERE n.name =‘Dasabala' RETURN 
n.Pos 

MATCH (n {name: ‘Dasabala'}) SET n.title = ‘Jina' RETURN n 

Read Operation 
 Reading a node named ‘Dasabala’ and return the PoS. 
e.g., 
  
Result in console: 

 
Update Operation  
-Updating a node named ‘Dasabala’ with 'Jina':  
 e.g., 
  
Result in console: 
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MATCH (n { name: ‘Dvipaduttama' }) DETACH DELETE n 

Delete Operation 
 - Deletinga node named with "Dvipaduttama"and all its relationships  
e.g., 
 
Result in console:  

 
Advance Feature of Neo4j 
 Cypher query language can use LOAD CSV to import data from CSV 
(Comma Separated Value) fileto get the data into query. The data can be 
loaded from standard CSV with LOAD CSV function. Firstly, the Buddhist 
vocabulary from the Pāli Canon was created with CSV format. From this the 
raw CSV data turn  into a graph database which shows the  nodes and the 
relationships between them but keeps the other details such as the meanings, 
PoS, and references as properties within the database. The following figure 
contained some words of Tipitaka and stored with CSV file format.  
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LOAD CSV WITH HEADERS FROM C:\Users\Dell\Desktop\GraphDbThesis\GraphDbThesis\Relation.csv As line 

 
 

Loading the data 
 The LOAD CSV statement can be used to load the data in from a CSV 
file as the following:  
  
 
 

Result in console: 
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Classification of Pāḷi Canon 
 The Pāḷi Canon is the complete scripture collection of the Theravāda 
school. As such, it is the only set of scriptures preserved in the language of its 
composition. It is called the Tipiṭaka or "Three Baskets" because it includes 
the Vinaya Piṭaka or "Basket of Discipline," the Sutta Piṭaka or "Basket of 
Discourses," and the Abhidhamma Piṭaka or "Basket of Higher Teachings".  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
Implementation for  Semantic Relationship of Buddhist Vocabulary with 
Neo4j 
 Firstly, words are extracted from the Pāḷi Canon and various Buddhist 
literatures written by Pāḷi. The relationship implementation was focused on 
Pāḷi word definitions and semantic relationship in the dictionaries, where the 

Figure 1. Classification of PāḷiCanon 
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meaning of a word is explained by other words in its gloss.The Pāḷi words and 
their activities are built in the spread sheet and stored with CSV file 
format.The graph database extracts the words that match a user-query and sets 
relationships between words by using Load CSV. The user can search the 
desired words via graphical user interface which provides to find the words 
with semantic meaning. The system will display the result all of the words and 
its relationships with graph view. The process flow of the words and the 
semantic relationship of Pāḷi words implemented by Neo4j graph databasewas 
provided in figure 2. 
 
 
 
  

 
 
 

 

Figure 2. System architecture for Semantic Relationship between Pāḷi words 

 
Figure (3) Relationship for Tipiṭaka Figure (4) User Interface for Tipitaka 
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Expert 
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Conclusion and Future Work 
In this work, a storage technique for Pāḷi Dictionary especially 

hyponym and meronym relationships was implemented based on graph 
database. Graph databases are a major pillar of the No SQL movement with 
lots of emerging products, such as Neo4j. Main contribute of this work is to 
support with Pāḷi words learner with understandable format. Yet, this is only 
the beginning. The automatic extraction of semantic relations of Pāḷi words 
form various resources will be future work. The evaluation and comparison 
with other graph databases and relational database were the future work. And 
also plan on migrating several researches done on relationship mining to work 
on graph database back-ends. 
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OBJECT ORIENTED APPROACHES FOR GIS DATABASE 
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Abstract 
Objects can be many things varying from an actual feature which 

can be extracted from a scene to more abstract entities which are associated 
with those features. There are a variety of database structures which can be 
used to store data about spatial features. These include RDBMS (Relational 
Database Management Systems), OODBMS (Object Oriented Database 
Management Systems) and ORDBMS (Object Relational Database 
Management Systems). All of these have retrieval systems based on SQL 
(Structured Query Language) and OQL (Object Query Language). The aim 
of this research is to compare the storage structure, retrieving data of 
RDBMS, ORDBMS and OODBMS storing the GIS (Geographic 
Information System) data of some Yangon Region’s townships. This 
research presents a study that investigates the current scope deployment of 
an effective and efficient geographical information system (GIS) based 
approach to the representation, organization and access of these databases 
by Yangon Region information. 
Keywords: spatial analysis, RDBMS, OODBMS, ORDBMS, SQL, GIS 

 
Introduction 

RDBMS (Relational Database Management System) and OODBMS 
(Object Oriented Database Management System) are both DBMSs (Database 
Management Systems) they differ in the model and use to represent data. 
OODBMSs use object-oriented model while the RDBMSs use the relational 
model. Both of them have their own advantages and drawbacks. OODBMS 
can store/ access complex data more efficiently than RDBMS. But learning 
OODBMS can be complex due to the object-oriented technology, compared to 
learning RDBMS. Therefore, choosing one over the other is dependent on the 
type and complexity of data that needs to be stored/ managed. 

An Object-Oriented Database Management System (OODBMS), 
sometimes referred as Object Database Management System (ODMS) is a 
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Database Management System (DBMS) that supports modeling and creation 
of data as objects. OODBMS provides support for object classes, class 
property and method inheritance by sub classes and their objects. A Relational 
Database Management System is also a DBMS but, that is based on the 
relational model. Most popular DBMSs currently in use are RDMSs. 

Databases are traditionally used in business and administrative applications. 
In this research, it is discussed how these new relational databases and object 
oriented database can be used to solve the problems posed by spatial data 
management and compare database design methodologies for developing efficient 
schema with a spatial dimension using the GIS data as a basis. GIS considers spatial 
objects which can be defined in space as points, lines or areas. GIS can serve users 
well in its areas.  

Relational Data Model for GIS data of Yangon Region 
 In the relational data model, information is organized in relations (two-
dimensional tables). Each relation contains a set of tuples (records). Each tuple 
contain a number of fields. A field may contain a simple value (fixed or variable size) 
from some domain (e.g. integer, real, text, etc.). All of this is accomplished in the 
Relational DBMS through well defined terms like relation, tuple, domain, and 
database in Figure (1). 
 
 
 
 
 
 
 
 
 
 
 

 

Township Table 
Township 
ID Township Name Township Map Url 

1 Ahlone C:\Yangon Ward Area\Ahlone.shp 
2 Bahan C:\Yangon Ward Area\Bahan.shp 

 Township Ward Coordinate Table 
TownshipDetailID XCoordinate Ycoordinate 

1 194380.172 1857102.75 
2 193364.219 1857881.75 

 Township Detail Table 
Township 
DetailID Township Population Density Area (Acre) … 

1 Ahlone 55482 83.42 665.10 
2 Bahan 96732 53.62 1804.00  Figure 1. Example of a Relational Data Model 
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ORDB (Object Relational Database) Enhanced Table Structures 
 An OR database consists of group of tables made up of rows. All rows 
in a table are structurally identical in that they all consist of a fixed number of 
values of specific data types stored in columns that are named as part of the 
table’s definition. The most important distinction between relational tables 
and object-relational database tables is the way that ORDBMS columns are 
not limited to a standardized set of data types. Figure (2) illustrates what an 
object-relational table looks like. 
 The first thing to note about this table is the way in which its column 
headings consist of both a name and a data type. Second, note how several 
columns have internal structure. In a SQL Server DBMS, such structure 
would be broken up into several separate columns, and operations over a data 
value such as Township Name would need to list other component column in 
figure(3). Third, this table contains several instances of unconventional data 
types. X, Y Coordinate is a geographic point, which is a latitude/longitude 
pair that describes a position on the globe, which is a kind of Binary Large 
Object (BLOB) in Table (1).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Township Table 
Township ID Township Name Township Map Url 

1 Ahlone C:\Yangon Ward Area\Ahlone.shp 
2 Bahan C:\Yangon Ward Area\Bahan.shp 

Township Detail Table 
Township 
Detail ID 

Township 
ID Township Population Density Area 

(Acre) 
1 1 Ahlone 55482 83.42 665.10 
2 1 Bahan 96732 53.62 1804.00 
. 
.   

. 

.   
12 2 Kyimyindine 111514 78.38 1422.79 
13 2 Mayangon 198113 31.65 6260.48  

Figure 2. Inheritance in an Object-Relational Database 
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Table 1. Structure and Data for Object-Relational Table 

 
Object-Oriented Data Model for GIS Data of Yangon Region 

 In the object-oriented data model, information is organized in graphs 
of objects, where each object has a number of attributes. Attributes can be 
simple values, complex values (part objects), references to other objects, or 
methods. Objects are instances of classes, and classes are (possibly) related to 
each by means of inheritance. The inheritance mechanism supports 
generalization and specialization and offers many aspects of structured reuse 
of models. Inheritance also offers the mechanism for qualified polymorphism, 
since the resulting type system can allow for objects to be recognized as 
belonging to several different types, namely the types of all the classes in the 
inheritance hierarchy which lies on the path from the instantiating class to the 
root of the hierarchy.  

Township ID::Township ID Township Name:: Ward Coordinate::X,Y 
1::1 Ahlone ::Thittaw 194380.172, 1857102.75 
2::2 Bahan::NgarHtatGyi(West) 193364.219, 1857881.75 

Township Detai lID X Coordinate Y coordinate 
1 194380.172 1857102.75 
2 193364.219 1857881.75  

Township 
Detail ID Township Population Density Area(Acre) Town 

shipID 
1 Ahlone 55482 83.42 665.10 1 
2 Bahan 96732 53.62 1804.00 1  

 
Township ID Township Name Township Map Url 

1 Ahlone C:\Yangon Ward Area\Ahlone.shp 
2 Bahan C:\Yangon Ward Area\Bahan.shp  

Figure 3. Object Relational Data Model 
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  A method of an object is a specification (code) of functionality, 
typically manipulations of the other attributes in the same object, but may also 
invoke methods, associated with other objects, and thus change the state of 
these other objects. An important aspect of object-oriented data models is the 
notion of object identity: Objects has an identity (often called OID) which is 
totally independent of the state of the object Figure (4). That is, user can have 
two objects with exactly the same state (same values in all attributes), but they 
will still in the object system be treated as two distinct objects, with separate 
identities. Object modeling describes systems as built out of objects: 
programming abstractions that have identity, behavior, and state. Objects are 
an abstraction beyond abstract data types (ADTs), where data and variables 
are merged into a single unifying concept. As such object modeling includes 
many other concepts: abstraction, similarity, encapsulation, inheritance, 
modularity, and so on. 

Township Table 
Township ID Township Name Township Map Url 

1 Ahlone C:\Yangon Ward Area\Ahlone.shp 
2 Bahan C:\Yangon Ward Area\Bahan.shp 

 
Township Detail Table 

Township 
DetailID 

Township 
Ward 

Population 
(Person) Density Area 

(Acre) 
Town 

ship ID 
1 Ahlone 55482 83.42 665.10 1 
2 Bahan 96732 53.62 1804.00 1 
. 
. 
 

. 

. 
13 Kyimyindine 111514 78.38 1422.79 2 

 Township Coordinate Table 
Township Detail ID X Coordinate Y coordinate 

1 194380.172 1857102.75 
2 193364.219 1857881.75 

Figure 4. Example of Object Oriented Table Structure for Yangon Region       
GIS Data 
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Experimental Results for Comparison of Databases 
 Experimental results are based on compare the relational, object-
relational and object oriented databases by using GIS data of Yangon Region 
townships. Its results of comparison are comparing query processing time of 
these databases. Furthermore map query system compares the land use of 
Yangon Region. This result can apply for city planning for Yangon Region. 
Table (2) shows the result of query processing time and area (acre) for RDB 
and OODB by Yangon Region Townships.  
 

The Comparison of Relational and Object Oriented Database by 
Townships 

 According to Table (2), the Figure (5) presents the query processing 
time of relational database and object oriented database on townships of 
Yangon Region. The 

 

Table 2. Comparison of Query Processing Time (QPT) for RDB and OODB 
by Yangon Region Townships 

No Township Name RDB  
(Milliseconds) 

OODB 
(Milliseconds) 

Area 
(Acre) 

No of 
Records 

1 Ahlone 425 214 665.60 10 
2 Bahan 91 76 1804.00 22 
3 Botathaung 90 64 588.80 10 
4 Dagon 44 47 2880.00 4 
5 Dagon Myothit (East) 60 58 6235.00 53 
6 Dagon Myothit (North) 50 47 4568 27 
7 Dagon Myothit Seikkan 55 45 4985.78 34 
8 Dagon Myothit (South) 51 31 5096.00 36 
9 Dala 57 28 2138.8 23 

10 Dawbon 46 37 910.98 14 
11 Hlaing Thar Yar 49 31 5699.00 28 
12 Hlaing 46 29 3368 15 
13 Insein 45 38 4356.23 20 
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No Township Name RDB  
(Milliseconds) 

OODB 
(Milliseconds) 

Area 
(Acre) 

No of 
Records 

14 Kamaryut 48 34 1363.2 9 
15 Kyauktada 44 31 176 8 
16 Kyeemyindine lower 45 40 654.23 10 
17 Kyeemyindine Upper 45 40 768.56 11 
18 Lanmadaw 48 32 248.9 11 
19 Lathar 49 30 200.96 9 
20 Mayangone 43 29 6260.48 9 
21 Mingalar Taungnyut 47 34 377 19 
22 Mingalardon 48 39 9875.65 33 
23 North Okkalarpa 48 39 4983.35 18 
24 Panbedan 44 30 187.53 12 
25 Pazundaung 46 31 1056.85 9 
26 Sanchaung 44 43 895.65 17 
27 Seikkyi Kanaungto 46 36 1508.84 7 
28 Shwepyithar 44 32 4465.32 16 
29 South Okkalarpa 49 30 1900.58 13 
30 Tarmwe 44 39 1184 20 
31 Thakada 54 40 3215.47 18 
32 Thingangyun 52 34 2841.74 38 
33 Yankin 44 41 1242.89 15 

system retrieves townships’ attributes table from relational database 
and townships’ map from object oriented database. The Figure (5) shows the 
comparison of the processing time of relational database and object oriented 
database. According to the result of this figure, Ahlone has more processing 
time than other townships because Ahlone is the first query of all townships. 
The Figure (6) shows the area of townships in Yangon Region. Mingalardon 
is the largest township and its processing time is 48 milliseconds for relational 
database and 39 milliseconds for object oriented database. Kyauktada 
Township is the smallest township in Yangon Region. Its query processing 
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time is 44 milliseconds for relational database and 31 milliseconds for object 
oriented database. 
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 Figure 5. Comparison of Query Processing Time (QPT) for RDB and OODB 
by Yangon Region Townships Area 
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Table 3. Query Processing Time (QPT) for Comparison of ORDB and OODB 
by Mingalardon Township Regions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No Region ORDB  
(milliseconds) 

OODB  
(milliseconds) 

Area  
Meters 

No of 
Records 

1 Airport_Area 54 91.01 1032525.50 1 
2 Antenna_mast_Symbol 69 92 1960.63 1 
3 Benchmark_Symbol 84 153.01 2009.67 1 
4 Builtup_Area 91.01 177.01 32619048.00 30 
5 Bush_or_scrub Area 96.01 165.65 940709.60 6 
6 Canal(Single).shp 90.01 147.01 283.87 2 
7 Cemetery Area 106.01 155.01 350559.78 9 
8 Cultivation Area 86 179.01 33381432.01 46 
9 Dense_forest Area 87.01 159.01 2778427.75 3 

10 Embankment_for_road 83 158.01 35590.91 1 
11 Factory_Symbol 53 153.01 3802.18 1 
12 Golf_course Area 82 176.01 2216476.75 1 
13 Grass Area 61 162.01 5144866.50 13 
14 Hotel_Symbol 63 162.01 12271.44 1 
15 House_Building 90.01 154.01 443423.60 710 
16 Intermediate_contour 73 151.01 4028148.75 63 
17 Marsh_or_swamp Area 110.01 149.01 1239681.38 24 
18 Monastery_Symbol 78 159.01 43115.71 26 
19 Monument_Symbol 81 161.01 14076.13 7 
20 Mosque_Symbol 87.01 157.01 1956.97 1 
21 Open_or_barren_land_Area 89.01 153.01 17144768.00 46 
22 Orchard_plantation Area 115.01 159.01 42347.00 1 
23 Pagoda_or_stupa_Symbol 101.01 148.01 140256.84 38 
24 Park Area 85 157.01 161752.13 2 
25 Plantation Area 82 147.01 1061072.88 5 
26 Police_station 89.01 153.01 352.98 2 
27 Post_office 86 157.01 178.82 1 
28 Public_building 110.01 167.01 1023528.94 677 
29 Railway_station 101.01 151.01 15020.04 2 
30 Relative_height Point 131.01 171.01 809.71 5 
31 River Area 78 153.01 460.47 10 
32 Scattered_trees Area 78 177.01 11575209.00 1 
33 School Area 86 164.01 44105.99 6 
34 Sparse_forest Area 90.01 153.01 9052389.00 22 
35 Sport_field Area 86 148.01 62010.20 59 
36 Supplementary_contour 113.01 172.01 15449770.11 5 
38 Triangulationstat_Symbol 85 166.01 1352580.88 7 
39 Vegitation_boundary 91.01 159.01 1352580.88 7 
40 Cemetery Area 90.01 151.01 8423.03 1 
41 Lake_or_pond 75 156.01 3535622.50 206  
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Comparison of Object Relational and Object Oriented Database by 
Townships 

 According to Table (3), the Figure (7) shows the query processing time 
of the maps of Mingalardon township’s regions from both databases. 
Mingalardon is the largest township and has multiple regions in Yangon 
Region among 33 townships. The Figure (8) shows the regions of 
Mingalardon Township. Cultivation region is the largest region and its area is 
33381432.01 square meters. The Figure (7) shows query processing time 
where object relation database is 86 milliseconds and object oriented database 
is 179 milliseconds. The smallest region is the post office region (178.82 
square meters) and its query processing time of object relational database is 81 
milliseconds and object oriented database is 157.01milliseconds. 
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Conclusion  
 This research is comparing relational database, object relational 
database and object oriented database for GIS data of 33 townships in Yangon 
Region by using map query system. This map query system has been 
implemented by using Microsoft C#.Net 2010, MapWin GIS, MS SQL server 
2010 for object relational database, db4o database for object oriented database 
on Intel® Dual Core CPU P6100 @ 2.00 GB main memory and Microsoft 
Window7 Ultimate. The experimental results are taken out from these 
computer specifications. It can vary depending on the enhancement of 
computer specifications. According to the result and discussion, it is generally 
concluded that the effective use of structured query language (SQL) on sql 
server 2010 for ORDB and query by example method on db4o database for 
OODB. It analyses the performance of the different query languages and same 
sizes of different databases. 
 This system is compared to the query processing time performance of 
RDB, ORDB and OODB. It is noticed that the experimental results in the 
figure and tables are counted from the outcome of the first time running on the 
query processing. All results are taken from the results of the first time query 
processing  not from the result of the next times because same query 
processing are faster than the first time. This is because the database optimizer 
optimizes execution by using least recently use (LRU) algorithm for frequents 
the same query. 
 As a result of comparison of relational and object oriented database, 
the system retrieves the township attribute data tables from relational database 
that is more processing time than OODB and retrieves GIS township map 
from object oriented database that is less processing time than RDB because 
the traditional RDBMSs are not suitable for applications with complex data 
structures or new data types for large, unstructured objects, such as CAD/ 
CAM, Geographic information systems, multimedia databases, imaging and 
graphics.  
 According to comparison of object relation and object oriented 
database by townships, the Mingalardon township and Kyauktada township 
are compared by object relational and object oriented database. In the result of 
this comparion, Mingalardon is the biggest township and Kyauktada township 
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is the smallest township of Yangon Region. Mingalardon township owns 41 
regions and Kyauktada owns 13 regions. Query processing time of ORDB is 
faster than OODB because of ORDB employs object-oriented concepts and 
capabilities on top of a conventional relational database management system 
(RDBMS). ORDBMSs are extensions of RDBMSs. The ORDBMS standard 
SQL: 1999 is a superset of the purely relational SQL-92 standard. Hence, all 
relational features are still available in ORDBMSs.  
 According to comparison of object relational and object oriented 
database by each region of townships, query processing time of object 
oriented database has more processing time than object relational database. 
First compared region is built up region; every townships of Yangon Region 
has built up region. Mingalardon has the largest built up area and Lathar owns 
smallest built up area. Second largest built up area is Shwe Pyi Thar and the 
second smallest is Panbedan township.   
 This research work performs well on the comparing relational 
database, object relational database and object oriented database for GIS data 
of 33 townships in Yangon Region. It also supports well for understanding 
how to build the databases and to retrieve from these database by using query 
languages. This research analyses on various types of databases and their 
query languages about structured query language in SQL server 2010 and 
object query language in db4o. In this research, Object Relational database is 
the more effective than other databases. Therefore one of the future works is 
to extend this research will build the data center for three dimensional urban 
planning of Yangon Region GIS data, and will retrieve these data by using 
oracle spatial query language. So, the query performance will view different 
urban land use pattern with three dimensions. Furthermore, the system can 
apply city planning of Yangon Region land use. 
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Abstract 
This research presents the utility of graphics cards to perform 

massively parallel simulation of advanced Monte Carlo methods. Graphics 
cards, containing multiple Graphics Processing Units (GPUs), are self-
contained parallel computational devices that can be housed in conventional 
desktop and laptop computers and can be thought of as prototypes of the 
next generation of many-core processors. For certain classes of population-
based Monte Carlo (MC) algorithms they offer massively parallel 
simulation, with the added advantage over conventional distributed multi-
core processors that they are cheap, easily accessible, easy to maintain, easy 
to code, dedicated local devices with low power consumption. On a 
canonical set of stochastic simulation examples including population-based 
Markov chain Monte Carlo (MCMC) methods and Sequential Monte Carlo 
(SMC) methods, speedups are found from 35 to 500 fold over conventional 
single-threaded computer code. These findings suggest that GPUs have the 
potential to facilitate the growth of statistical modelling into complex data 
rich domains through the availability of cheap and accessible many-core 
computation.  
Keywords: Sequential Monte Carlo, Population-Based Markov Chain 

Monte Carlo, General Purpose Computation on Graphics 
Processing Units, Many-Core Architecture, Stochastic 
Simulation, Parallel Processing 

 

Introduction 
This research describes the utility of graphics cards involving Graphics 

Processing Units (GPUs) to perform local, dedicated, massively parallel 
stochastic simulation. GPUs were originally developed as dedicated devices to 
aid in real-time graphics rendering. However recently there has been an 
emerging literature on their use for scientific computing as they house 
multicore processors. Many advanced population-based Monte Carlo (MC) 
algorithms are ideally suited to GPU simulation and offer significant speed up 
over single CPU implementation. The focus is on the parallelization of general 
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sampling methods. Moreover, this research shows how the choice of 
population-based MC algorithm for a particular problem can depend on 
whether one is running the algorithm on a GPU or a CPU. 

To gain an understanding of the potential benefits to statisticians this 
research has investigated speedups on a canonical set of examples taken from 
the population-based MC literature. These include Bayesian inference for a 
Gaussian mixture model computed using a population-based Markov Chain 
Monte Carlo (MCMC) method. The idea of splitting the computational effort of 
parallelizable algorithms amongst processors is certainly not new to 
statisticians. In fact, distributed systems and clusters of computers have been 
around for decades. Many-core processor communication has very low 
latency and very high bandwidth due to high-speed memory that is shared 
amongst the cores. Low latency here means the time for a unit of data to be 
accessed or written to memory by a processor is low while high bandwidth 
means that the amount of data that can be sent in a unit of time is high. For 
many algorithms, this makes parallelization viable where it previously was 
not. In addition, the energy efficiency of a many-core computation compared 
to a single-core or distributed computation can be improved. This is because 
the computation can both take less time and require less overhead. Finally, 
these features enable the use of parallel computing for researchers outside 
traditional high-cost centers housing high-performance computing clusters. 

The speedup is chosen to investigate for the simulation of random 
variates from complex distributions, a common computational task when 
performing inference using MC. In particular, population-based MCMC 
methods and SMC methods are focused on for producing random variates as 
these are not algorithms that typically see significant speedup on clusters due 
to the need for frequent, high-volume communication between computing 
nodes. This work focuses on the suitability of many-core computation for MC 
algorithms whose structure is parallel, since this is of broad theoretical 
interest, as opposed to a focusing on parallel computation of application-
specific likelihoods. 

The algorithms are implemented for the Compute Unified Device 
Architecture (CUDA) and make use of GPUs which support this architecture. 
CUDA offers a fairly mature development environment via an extension to 
the C programming language. For applications CUDA version 5.5 with an 



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 145 

NVIDIA GT 750M are used. The GT 750M has 384 multiprocessors. For all 
current NVIDIA cards, a multiprocessor comprises 8 arithmetic logic units 
(ALUs), 2 special units for transcendental functions, a multithreaded 
instruction unit and on-chip shared memory. For example, for single-precision 
floating point computation, one can think of the GT 750 as having 3072 (384 
× 8) single processors. The current generation of GPUs is 4-8 times faster at 
single precision arithmetic than double precision. Single precision seems 
perfectly sufficient for the applications in this research since the variance of 
the Monte Carlo estimates exceeds the perturbations due to finite machine 
precision. 

 

Graphics Processing Unit for Parallel Processing 
GPUs have evolved into many-core processing units, currently with up 

to 30 multiprocessors per card, in response to commercial demand for real-
time graphics rendering, independently of demand for many-core processors 
in the scientific computing community. As such, the architecture of GPUs is 
very different to that of conventional CPUs. An important difference is that 
GPUs devote proportionally more transistors to ALUs and less to caches and 
flow control in comparison to CPUs. This makes them less general purpose 
but highly effective for data-parallel computation with high arithmetic 
intensity, i.e. computations where the same instructions are executed on 
different data elements and where the ratio of arithmetic operations to 
memory operations is high. This Single Instruction Multiple Data (SIMD) 
architecture puts a heavy restriction on the types of computation that 
optimally utilize the GPU but in cases where the architecture is suitable it 
reduces overhead. 

Figure 1 gives a visualization of the link between a host machine and 
the graphics card, emphasizing the data bandwidth characteristics of the links 
and the number of processing cores. A program utilizing a GPU is hosted on a 
CPU with both the CPU and the GPU having their own memory.  Data is 
passed between the host and the device via a standard memory bus, similar to 
how data is passed between main memory and the CPU. The memory bus 
between GPU memory and the GPU cores is both wider and has a higher 
clock rate than a standard bus, enabling much more data to be sent to the cores 
than the equivalent link on the host allows. This type of architecture is ideally 
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suited to data-parallel computation since large quantities of data can be loaded 
into registers for the cores to process in parallel. In contrast, typical computer 
architectures use a cache to speed up memory accesses using locality 
principles that are generally good but do not fully apply to data-parallel 
computations, with the absence of temporal locality most notable. 

 
Figure 1:  Link between host and graphics card. The thicker lines represent 

higher data  bandwidth while the squares represent processor cores. 
 

Graphics Processing Units Parallelizable Algorithms 
In general, if a computing task is well-suited to SIMD parallelization 

then it will be well-suited to computation on a GPU. In particular, data-
parallel computations with high arithmetic intensity (computations where the 
ratio of arithmetic operations to memory operations is high) are able to attain 
maximum performance from a GPU. This is because the volume of very fast 
arithmetic instructions can hide the relatively slow memory accesses. It is 
crucial to determine whether a particular computation is data-parallel on the 
instruction level when determining suitability. From a statistical simulation 
perspective, integration via classical Monte Carlo or importance sampling is 
ideal computational tasks in a SIMD framework. This is because each 
computing node can produce and weight a sample in parallel, assuming that 
the sampling procedure and the weighting procedure have no conditional 
branches. If these methods do branch, speedup can be compromised by many 
computing nodes running idle while others finish their tasks. This can occur, 
for example, if the sampling procedure uses rejection sampling. 

In contrast, if a computing task is not well-suited to SIMD 
parallelization then it will not be well-suited to computation on a GPU. In 
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particular, task-parallel computations where one executes different 
instructions on the same or different data cannot utilize the shared flow 
control hardware on a GPU and often end up running sequentially. Even when 
a computation is data-parallel, it might not give large performance 
improvements on a GPU due to memory constraints. This can be due to the 
number of registers required by each thread or due to the size and structure of 
the data necessary for the computation requiring large amounts of memory to 
be transferred between the host and the graphics card. 

Many statistical algorithms involve large data sets, and the extent to 
which many-core architectures can provide speedup depends largely on the 
types of operations that need to be performed on the data. For example, many 
matrix operations derive little speedup from parallelization except in special 
cases, e.g. when the matrices involved are sparse. It is difficult to classify 
concisely the types of computations amenable to parallelization beyond the 
need for data-parallel operations with high arithmetic intensity. However, 
experience with parallel computing should allow such classifications to be 
made prior to implementation in most cases. 

 

Parallelizable Sampling Methods 
A number of sampling methods for parallel implementations can be 

produced without significant modification. There is an abundance of statistical 
problems that are essentially computational in nature, especially in Bayesian 
inference. In many such cases, the problem can be distilled into one of 
sampling from a probability distribution whose density π, pointwise and up to 
a normalizing constant can be computed, that is, π*(·) where π (x) = π*(x)/Z 
can be computed. A common motivation for wanting samples from π is so 
expectations of certain functions can be computed. If such a function is 
denoted by ϕ, the expectation of interest is 
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The Monte Carlo estimate of this quantity is given by 

   
where     are samples from π. 

Samples from π in order to compute this estimate are needed. In 
practice, one often cannot sample from π directly. There are two general 
classes of methods for dealing with this. The first are importance sampling 
methods, where the weighted samples are generated from π by generating N 
samples according to some importance density γ proportional to γ* and then 
estimating I  via 

   
where W(i) are normalized importance weights 

   
The asymptotic variance of this estimate is given by C(ϕ, π, γ)/N, that is, 

a constant over N. For many problems, it is difficult to come up with an 
importance density γ such that C(ϕ, π, γ) is small enough to attain reasonable 
variance with practical values of N. 

The second general class of methods are MCMC methods, in which an 
ergodic π-stationary Markov chain is sequentially constructed. Once the chain 
has converged, all the dependent samples can be used to estimate I. The major 
issue with MCMC methods is that their convergence rate can be prohibitively 
slow in some applications. 

For example, naive importance sampling, like classical Monte Carlo, is 
intrinsically parallel. Therefore, in applications where one have access to a 
good importance density γ, linear speedup can be got with the number of 
processors available. Similarly, in cases where MCMC converges rapidly, the 
estimation of I can be parallelized by running separate chains on each 
processor. While these situations are hoped for, they are not particularly 
interesting from a parallel architecture standpoint because they can run 
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equally well in a distributed system. Finally, this research is not concerned 
with problems for which the computation of individual MCMC moves or 
importance weights are very expensive but themselves parallelizable. While 
the increased availability of parallel architectures will almost certainly be of 
help in such cases, the focus here is on potential speedups by parallelizing 
general sampling methods. Example of recent work in this area can be found 
in this research, in which speedup is obtained by parallelizing evaluation of 
individual likelihoods. 

 

Population-Based Markov chain Monte Carlo  
 A common technique in facilitating sampling from a complex 
distribution π with support in X is to introduce an auxiliary variable a∈ A and 
sample from a higher-dimensional distribution with support in the joint 
space A×X, such that admits π as a marginal distribution. With such 
samples, one can discard the auxiliary variables and be left with samples from 
π. A kernel will generally refer to a Markov chain transition kernel as opposed 
to a CUDA kernel.  
 This idea is utilized in population-based MCMC, which attempts to 
speed up convergence of an MCMC chain for π by instead constructing a 
Markov chain on a joint space XM using M − 1 auxiliary variables each in X. 
In general, one have M parallel ‘subchains’ each with stationary distribution 

 and πM  = π. Associated with each subchain i is an 
MCMC kernel Li that leaves πi invariant, and which one run at every time 
step. Of course, without any further moves, the stationary distribution of the 
joint chain is 
       and so if x1:M ~ ߨത, then xM ~ π. This scheme does not affect the convergence 
rate of the independent chain M. However, since mixtures of ߨത-stationary 
MCMC kernels can be cycled without affecting the stationary distribution of 
the joint chain, certain types of interaction between the subchains can be 
allowed which can speed up convergence. In general, a series of MCMC 
kernels that act on subsets of the variables is applied. The number of second-
stage MCMC kernels are denoted by R and the MCMC kernels themselves as 
K1, … ,KR, where kernel Kj operates on variables with indices in Ij⊂M. The 
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idea is that the R kernels are executed sequentially and it is required that each 
Kj leave Π I ∈ Ij πi invariant. 
 Given π, there are a wide variety of possible choices for M, π 1:M−1, L1:M, 
R, I1:R and K1:R which will affect the convergence rate of the joint chain. The 
first stage of moves involving L1:M is trivially parallelizable. However, the 
second stage is sequential in nature. For a parallel implementation, it is 
beneficial for the Ij’s to be disjoint as this allows the sequence of exchange 
kernels to be run in parallel. Of course, this implies that I1:R should vary with 
time since otherwise there will be no interaction between the disjoint subsets 
of chains. Furthermore, if the parallel architecture used is SIMD (Single 
Instruction Multiple Data) in nature, it is desirable to have the Kj’s be nearly 
identical algorithmically. The last consideration for parallelization is that 
while speedup is generally larger when more computational threads can be run 
in parallel, it is not always helpful to increase M arbitrarily as this can affect 
the convergence rate of the chain. However, in situations where a suitable 
choice of M is dwarfed by the number of computational threads available, one 
can always increase the number of chains with target π to produce more 
samples. 
 

Population-Based MCMC Algorithm 
There are two types of moves: 
1.  In parallel, each chain i performs an MCMC move targetting  
2. In parallel, adjacent chains i and i + 1 perform an MCMC ‘exchange’ 

move targeting  
A simple exchange move at time n proposes to swap the values of the 

two chains and has acceptance probability   

   . 
In order to ensure (indirect) communication between all the chains, the 
exchange partners are picked at each time with equal probability from  
                           . 
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Sequential Monte Carlo Samplers  
SMC samplers are a more general class of methods that utilize a 

sequence of auxiliary distributions ߨ ,… ,0ߨT,  much like population-based 
MCMC. However, in contrast to population-based MCMC, SMC samplers 
start from an auxiliary distribution  0ߨ and recursively approximate each 
intermediate distribution in turn until finally ߨT = ߨ is approximated. The 
algorithm has the same general structure as classical SMC, with differences 
only in the types of proposal distributions, target distributions and weighting 
functions used in the algorithm.  

The difference between population-based MCMC and SMC samplers 
is subtle but practically important. Both can be viewed as population-based 
methods on a similarly defined joint space since many samples are generated 
at each time step in parallel. However, in population-based MCMC the 
samples generated at each time each have different stationary distributions and 
the samples from a particular chain over time provide an empirical 
approximation of that chain’s target distribution. In SMC samplers, the 
weighted samples generated at each time approximate one auxiliary target 
distribution and the true target distribution is approximated at the last time 
step. 

                                               

Algorithmic Details 
1. At time t = 0: 
     For i = 1,…,N, sample           
     For i = 1,…,N, evaluate the importance weights: 

                                                              
2. For times t = 1,…, T: 
      For i = 1,…,N, sample 

       . 
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For i = 1,…,N, evaluate the importance weights: 

. 
Normalize the importance weights. Depending on some criteria, resample the 
particles. Set 

. 
For the special case where Lt-1 is the associated backwards kernel for Kt , ie. 

                        . 
the incremental importance weights simplify to 

                       . 
The normalization step is a reduction operation and a divide operation. The 
resampling step involves a parallel scan. 

             

Implementation of Canonical Examples 
To demonstrate the types of speed increase one can attain by utilizing 

GPUs, each method to a representative statistical problem is applied. Bayesian 
inference for a Gaussian mixture model is used as an application of the 
population-based MCMC and SMC samplers. 
 The applications are representative of the types of problems that these 
methods are commonly used to solve. In particular, while the distribution of 
mixture means given observations is only one example of a multimodal 
distribution, it can be thought of as a canonical distribution with multiple 
well-separated modes. Therefore, the ability to sample points from this 
distribution is indicative of the ability to sample points from a wide range of 
multimodal distributions.  
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Mixture Modeling 
Finite mixture models are a very popular class of statistical models as 

they provide a flexible way to model heterogeneous data. Let y = y1:m denote 
identically independent distribution (i.i.d) observations where yj∈R for j {1, 
… ,m}. A univariate Gaussian mixture model with k components states that 
each observation is distributed according to the mixture density 

   where f denotes the density of the univariate normal distribution. The density 
of y is then equal to 
                             . 
For simplicity, assume that k, w1:k−1 and σ1:k are known and that the prior 
distribution on μ is uniform on the k-dimensional hypercube [−10, 10]k. k = 4, 
σi = σ = 0.55, wi = w = 1/k for i {1, … , k} are set. m = 100 observations are 
simulated for μ = μ1:4 = (−3, 0, 3, 6). The resulting posterior distribution for μ 
is given by 
                             . 

The main computational challenge associated with Bayesian inference 
in finite mixture models is the nonidentifiability of the components. As 
exchangeable priors have been used for the parameters μ1:4, the posterior 
distribution p(μ|y) is invariant to permutations in the labeling of the 
parameters. Hence this posterior admits k! = 24 symmetric modes, which 
basic random-walk MCMC and importance sampling methods typically fail to 
characterize using practical amounts of computation. Generating samples 
from this type of posterior is a popular method for determining the ability of 
samplers to explore a high-dimensional space with multiple well-separated 
modes. 

 

 Population-Based Markov chain Monte Carlo  
The auxiliary distributions π1:M−1 following the parallel tempering 

methodology are selected, that is, πi(x) π(x)βi with 0 < β1 < … < βM = 1 and 
use M = 200. This class of auxiliary distributions is motivated by the fact that 
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MCMC converges more rapidly when the target distribution is flatter. For this 
problem, the cooling schedule βi = (i/M)2 and a standard N(0,Ik) random walk 
Metropolis-Hastings kernel are used for the first stage moves. 

For the second stage moves, the basic exchange move are used, chains 
i and j swap their values with probability min{1, αi j} where  

                                                  . 
Further, the exchanges to take place only between adjacent chains are 

allowed so that all moves can be done in parallel. R = M/2 and I1:R is either 
{{1, 2}, {3, 4}, … , {M − 1, M}} or {{2, 3}, {4, 5}, … , {M – 2, M − 1},            
{M, 1}}, each with probability half are used. Emphasize that all first stage 
MCMC moves are executed in parallel on the GPU, followed by all the 
exchange moves being executed in parallel. The following code segments are 
to get compute value function properties for MCMC. 

 
 
 
 
 
 
 
 

 To test the computational time required by the algorithms the number 
of chains are allowed to vary but fix the number of points which wishing to 
sample from the marginal density πM = π at 8192. As such, an increase in the 
number of chains leads to a proportional increase in the total number of points 
sampled. 
 

Sequential Monte Carlo Sampler  
As with population-based MCMC, a tempering approach and the same 

cooling schedule are used, this is, πt(x) π(x)βt with  βt = (t/M)2 and M = 200. 
The uniform prior on the hypercube are used to generate the samples {x0(1:N)} 
and perform 10 MCMC steps with the standard N(0,Ik) random walk 
Metropolis-Hastings kernel at every time step. The generic backward kernel is 

void mcmc(int M, int nb, int nt) 
{ 

generate_mix_data(k, sigma, mus, data_array, L); 
compute_ci1_ci2(sigma, 1.0f / k, c1, c2); 
populate_rand_d(d_array_init, numChains * k); 
multiply(numChains * k, d_array_init, d_array_init, 20, nb, nt); 
add(numChains * k, d_array_init, d_array_init, -10, nb, nt); 

} 
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used for the case where each kernel is πt -stationary so that the unnormalized 
incremental importance weights are of the form πt(xt−1)/πt−1(xt−1). The 
following code segments are to compute value function properties for SMCS. 

 
 
 
 
 
 
 

Results and Discussion 
The parallel code is run on a computer equipped with an NVIDIA GT 

750M GPU, and the reference single-threaded code is run on a Intel 
(R)core(TM)i7 4500U CPU 1.80GHz processor. The resulting processing 
times and speedups are given in Tables 1–2.  
 

Population-Based Markov chain Monte Carlo Results 
      Table 1: Running times for the Population-Based MCMC Sampler for various 
numbers of chains M. 

       N = 8192 points are sampled from chain M.         
                                           

M CPU(secs) GT 750 M(secs) Speedup 
(1)   8 1.33 0.93 1 
(2)  32 5.32 1.03 5 
(3) 128 20.00 1.89 11 
(4) 512 62.40 1.24 50 
(5)2048 249.64 1.43 175 
(6)8192 998.42 2.32 430 
(7)32768 4002.00 7.73 518 
(8)131072 16218.00 28.35 572 

              
 

void testMG(int N, int nb, int nt) 
 { 
 generate_mix_data(k, sigma, mus, data_array, L); 
 compute_ci1_ci2(sigma, 1.0f / k, c1, c2); 
 populate_rand_d(d_array_init, N * k); 
 multiply(N * k, d_array_init, d_array_init, 20, nb, nt); 
 add(N * k, d_array_init, d_array_init, -10, nb, nt); 
 testMG(N, k, T, numSteps, d_array_init, temps, h_args_t1, h_args_t2, nb, nt); 
 testMG_host(N, k, T, numSteps, array_init, temps, h_args_t1, h_args_t2); 
 } 
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 Figure 2: The relation of execution time and number of chains 

  
 Figure 3: The relation of speedup and number of chains 
Processing times for MCMC code are given in Table 1, in which one 

can see that using 131072 chains is impractical on the CPU but entirely 
reasonable using the GPU. Figure 2 shows that GPU time is faster than CPU 
time. Figure 3 shows that speedup goes faster with increasing the number of 
chains. So it can be observed that parallel computing is more suitable for 
enormous data. 
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Sequential Monte Carlo Sampler Results 
Table 2: Running times for the Sequential Monte Carlo Sampler for various 

values of N. 
N CPU(secs) GT 750 M 

(secs) Speedup 
(1)8192 266.40 0.60 444 
(2)16384 529.20 1.11 477 
(3)32768 1062.00 2.19 485 
(4)65536 2118.00 4.50 471 
(5)131072    4236.00 8.08 524 
(6)262144 8460.00 16.22 522 

 

                  
           Figure  4: The relation of execution time and number of values 

       
       Figure 5: The relation of speedup and number of values 
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Processing times for SMCS code are given in Table 2. GPU execution 
time is faster than CPU execution time in SMC sampler that shown in Figure 
4. Figure 5 shows that speedup goes faster with increasing the number of 
values. 
 

Discussion 
The speedup for the population-based MCMC algorithm and the SMC 

sampler is tremendous. In particular, the evaluation of p(y|μ) for the mixture-
modelling application has high arithmetic intensity since it consists of a 
product-sum operation with 400 Gaussian log-likelihood evaluations 
involving only 104 values. In fact, because of the low register and memory 
requirements, so many threads can be run concurrently that SIMD calculation 
of this likelihood can be sped up by 500 times on the GT 750M. Estimation of 
static parameters in continuous state-space models or the use of SMC 
proposals within MCMC can require thousands of runs, so a speedup of this 
scale can substantially reduce the computation time of such approaches. 
Speedups can be expected in the vicinity of 500 with SMC if few resampling 
steps are required and each weighting step has small space complexity and 
moderate time complexity. 

While CUDA have been used to implement the parallel components of 
algorithms, the results are not necessarily specific to this framework or to 
GPUs. It is expected that the many-core processor market will grow and there 
will be a variety of different devices and architectures to take advantage of. 
However, the SIMD architecture and the sacrifice of caching and flow control 
for arithmetic processing is likely to remain since when it is well-suited to a 
problem it will nearly always deliver considerable speedup. For users who 
would like to see moderate speedup with very little effort, there is work being 
done to develop libraries that will take existing code and automatically 
generate code that will run on a GPU.  

The speedups attainable with many-core architectures have broad 
implications in the design, analysis, and application of SMC and population-
based MCMC methods. In application, this does not occur until one have 
around 4096 auxiliary distributions. One might notice that this number is far 
larger than the number of processors on the GPU. This is due to the fact that 
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even with many processors, significant speedup can be attained by having a 
full pipeline of instructions on each processor to hide the relatively slow 
memory reads and writes. In both SMC and MCMC, it is also clear from this 
case study that it is beneficial for each thread to use as few registers as 
possible since this determines the number of threads that can be run 
simultaneously. This may be of interest to the methodology community since 
it creates a space-time trade-off that might be exploited in some applications. 

A consequence of the space-time trade-off mentioned above is that 
methods which require large numbers of registers per thread are not 
necessarily suitable for parallelization using GPUs. For example, operations 
on large, dense matrices that are unique to each thread can restrict the number 
of threads that can run in parallel and hence dramatically affect potential 
speedup. In cases where data are shared across threads, however, this is not an 
issue. In principle, it is not the size of the data that matters but the space 
complexity of the algorithm in each thread that dictates how scalable the 
parallelization is. 

 

Conclusion 
The potential of parallel processing to aid in statistical computing is 

well documented. Graphics cards for certain generic types of computation 
offer parallel processing speedups with advantages. They are Cost: graphics 
cards are relatively cheap, being commodity products. Accessibility: graphics 
cards are readily obtainable from consumer-level computer stores or over the 
internet. Maintenance: the devices are self-contained and can be hosted on 
conventional desktop and laptop computers. Speed: in line with multi-core 
CPU clusters, graphics cards offer significant speedup, albeit for a restricted 
class of scientific computing algorithms. Power: GPUs are low energy 
consumption devices compared to clusters of traditional computers, with a 
graphics card requiring around 200 Watts. While improvements in energy 
efficiency are application-specific, it is reasonable in many situations to 
expect a GPU to use around 10 per cent of the energy to that of an equivalent 
CPU cluster. Dedicated and local: the graphics cards slot into conventional 
computers offering the user ownership without the need to transport data 
externally. 
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The parallelization of the advanced Monte Carlo methods described here 
opens up challenges both for practitioners and for algorithm designers. There 
are already an abundance of statistical problems that are being solved 
computationally and technological advances, if taken advantage of by the 
community, can serve to make previously impractical solutions eminently 
reasonable and motivate the development of new methods. 

The speedups have practical significance. Arithmetic intensity is 
important. There is a roughly linear penalty for the space complexity of each 
thread. Emerging many-core technology is likely to have the same kinds of 
restrictions. There is a need for methodological attention to this model of 
computation. For example, SMC sampler methodology can be more suitable 
to parallelization when the number of auxiliary distributions one wants to 
introduce is not very large. There are many other algorithms that will benefit 
from this technology. 
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